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Errata

This edition of the thesis contains the following corrections and additions com-
pared to the officially submitted thesis:

• Mads Bøttger Hansen and Ove Christiansen have been acknowledged.

• References [A1-A2] have been updated since they have now been submitted.

• Section 2.2.5 has been added in the hope that it will stimulate future re-
search.

• The gas phase experiment target chamber pressure has been corrected from
9× 10−7 mbar to 6× 10−8 mbar (page 57).

• The caption of Fig. 5.5 duplicated that of of Fig. 5.6 and has been corrected.

• The argument lists of V and W in (6.2) were swapped and are now correct.

• The numerical evaluation of fluences (page 100) used a moment of inertia
of I2 that was a factor 2π too high and the factor 1/2 under the square root
in (6.43) was neglected. The resulting fluences (6.46)-(6.48) have been cor-
rected from 7.1 J/cm2, 14.5 J/cm2 and 6.1 J/cm2 to 1.1 J/cm2, 4.10 J/cm2

and 2.45 J/cm2, respectively. The text “somewhat lower, only about” has
been replaced with “about the same,” to reflect the better agreement.
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Abstract

In this thesis, the rotation of isolated molecules and molecules solvated in super-
fluid helium nanodroplets is studied. The study is both theoretical and experi-
mental. Coherent rotation of the molecules is induced by an ultrashort, linearly
polarized laser pulse with a duration of about a picosecond or less. A few pi-
coseconds after the pulse, the coherent rotation induced by the laser pulse causes
the molecules to align, i. e. confining the molecular axes along axes fixed in space,
though only for a short time. In this thesis, only experiments where a single
molecular axis becomes confined are considered.

The established theory for laser-induced alignment of isolated molecules is
reviewed. Following the review, the existing theory is extended to take into
account the way most experiments are done in practice. The newly developed
theory is shown to be in excellent agreement with experiments. The theory
is implemented in an efficient simulation program which has been made freely
available.

A new machine for conducting alignment experiments on isolated molecules
and molecules solvated in superfluid helium droplets under identical laser condi-
tions have recently been built in Femtolab. This machine is described and results
of experiments performed on I2 molecules in this machine are presented. These
results show several new, never observed before alignment features for molecules
in superfluid helium. Particularly, the results show coherent rotation all the way
out to 600 ps or more. Furthermore, as the strength of the alignment laser is
increased, the coherent rotation stops. Increasing the strength further also leads
to new, never observed before alignment features. At high laser pulse strengths,
fast initial dynamics emerge. The new, fast dynamics is interpreted as short-lived
cavitation of the helium solvent. In the cavity, the molecule rotates freely without
interacting with the helium until the cavity collapses a few picoseconds later.

The observed results are rationalized with simplified models, one based on
quantum mechanics and another based on classical physics. Both of these com-
plementary models support the interpretations of the experimental result.

The new results seem to reconcile impulsive laser induced alignment with
rotationally-resolved IR spectroscopy after years of being at odds with each other.
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Dansk Resumé

I denne afhandling bliver rotation af frie molekyler og molekyler opløst i superfly-
dende helium nanodråber undersøgt. Studiet er både eksperimentelt og teoretisk.
Kohærent rotation af molekylerne bliver startet af ultrakorte, lineært polariserede
laser pulser ikke længere end omtrent et picosekund. Få picosekunder efter laser
pulsen får den kohærente rotation molekylerne til at ensrettes. Det vil sige at
akserne for hvert molekyle kommer til at pege langs de samme inertielle akser.
Ensretningen ophører dog kort tid efterfølgende. Denne afhandling omhandler
kun eksperimenter hvor en enkelt molekylefast akse bliver ensrettet.

Der bliver givet en kort gennemgang af den etablerede teori om laserpuls
ensretning af molekyler. Efterfølgende bliver denne teori udvidet så den også
beskriver den måde de fleste eksperimenter foregår på i praksis. Denne nye teori
bliver eftervist eksperimentelt, og viser sig at være i særdeles god overensstem-
melse med forsøgene. Teorien bliver implementeret i et effektivt simuleringspro-
gram som er gjort frit tilgængeligt.

En ny maskine til at udføre ensretningseksperimenter med frie molekyler
og molekyler opløst i superflydende helium nanodråber under identiske laser-
betingelser, er for nyligt blevet opført i Femtolab. Denne maskine bliver beskrevet,
og resultater af eksperimenter med I2 molekyler foretaget på maskinen bliver
fremlagt. Disse resultater viser at iod opfører sig på en helt ny måde som aldrig
før er set for molekyler i superflydende helium. Specielt viser resultaterne at
kohærent rotation bliver ved helt ud til 600 ps eller længere. Hvad mere er, at
nå pulsstyrken øges, så stopper den kohærente rotation. Når pulsstyrken øges
yderligere observeres helt ny opførsel, som igen aldrig er set tidligere. Ved de
høje laser pulsstyrker opstår der nemlig tidlig og meget hurtig dynamik. Den
nye hurtige dynamik tilskrives at molekylet i dets rotation udhuler heliumdråben
og derefter roterer frit, indtil hullet kollapser omkring molekylet få picosekunder
senere.

De målte resultater bliver rationaliseret med simplificerede modeller. En
model er baseret på kvantemekanik og en anden er baseret på klassisk fysik.
Begge komplementære modeller understøtter fortolkningen af de eksperimentelle
resultater.

De nye resultater ser ud til at genforene kortpuls molekylær ensretning med
rotationsopløst IR spektroskopi efter flere års uoverensstemmelse.
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1
Introduction

The aim of the PhD project presented in this thesis is to improve the current
understanding of laser-induced alignment and rotation of molecules embedded
in superfluid helium nanodroplets. In the following sections, introductions to
laser-induced alignment and helium nanodroplets are given.

1.1 Laser-induced alignment

Molecules in the gas or solution phase are randomly oriented due to the stochastic
nature of microscopic thermal interactions. It is, however, possible to control the
rotation of molecules and to align them. Alignment refers to the confinement of
molecular (polarizability) axes along laboratory fixed axes. One-dimensional (1D)
alignment refers to confinement of a single molecular axis along a laboratory-fixed
axis. Three-dimensional (3D) alignment refers to alignment where three linearly
independent molecular axes are confined to three laboratory fixed axes. Note
that if two axes are confined, the third is automatically also confined. Two-
dimensional (2D) alignment is therefore equivalent with 3D alignment. Although
not explored in my thesis, it is noted that for polar molecules, complete rotational
control also requires orientation, where orientation refers to the molecular dipole
moments pointing in a particular direction.

Among other things, alignment of molecules uniquely enables: 1) Studying
the alignment-dependence of molecular reactions and light-matter interactions.
2) Performing measurements in the molecular frame of reference, thus optimizing
the information content of experimental observables [1–12]. One way to align
molecules is by using the moderately intense laser fields that are attainable in
short and ultrashort laser pulses on the nanosecond to femtosecond time scales [5].
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1. Introduction

Alignment of molecules in this way is classified as either adiabatic or impulsive
alignment. If the pulse duration τ is much longer than the rotational period of
the molecule T , the alignment is adiabatic. In this case, the laser pulse forces
the molecules to align with the polarization axis only for the duration of the
pulse. In the opposite limit τ � T , called impulsive alignment, the pulse induces
coherent rotation of the molecules. The rotation in turn leads to alignment after
the pulse is over. It is thus possible to study aligned molecules under field-free
conditions. This thesis is mainly concerned with impulsive 1D alignment. The
theory of laser-induced alignment of isolated molecules is described in greater
detail in chapters 2 and 3.

1.2 Superfluid helium and helium nanodroplets

Another important spectroscopic technique is cryogenic matrix isolation. Exotic,
short-lived species, such as molecular radicals and -ions, reactive intermediates of
chemical reactions, and weakly bound van der Waals complexes can be studied by
embedding the species in a cold, unreactive host material, called a matrix. Over
the past two decades, helium nanodroplet spectroscopy has developed. Helium
droplets consisting of 103-108 atoms have been declared the ideal spectroscopic
matrix, since they are ultracold (T = 0.37 K), readily pick up and cool down a
variety of molecules or atoms and the superfluid properties, e. g. that of vanishing
viscosity, minimize the interaction between the droplet and the species of inter-
est. Furthermore, many modern laser techniques applies unproblematically, since
helium is transparent in a wide spectral range from the far IR to the UV [13–15].

Within the last five years, a main topic of the research in Femtolab at Aarhus
University has been on laser-induced alignment of molecules embedded in he-
lium nanodroplets [16–19]. A successful combination of laser-induced alignment
and helium nanodroplet spectroscopy could open up for unique opportunities to
study alignment dependent chemistry in this dissipative environment, as well as
studying alignment of heavier, less rigid molecules e. g. of relevance in biochem-
istry. These molecules are otherwise difficult to isolate without breaking them
apart [15]. Alignment of molecules in classical solvents is hindered by several ob-
stacles. In a classical solvent, the molecules are not free to rotate, due to collisions
with the solvent. Even if coherent rotation could be initiated by a laser pulse,
the coherence, and thereby the alignment would be lost to the collisions. The
intense laser pulse would also interact with the solvent and e. g. cause ionization.
This would interfere with the alignment and potentially make reliable detection
impossible. Most of these obstacles are absent in superfluid helium droplets.

Alignment dependent solute chemistry is not the only motivation behind the
helium droplet research in Femtolab. As a macroscopic quantum system, super-
fluid helium is a remarkable substance with an entire research field of its own. See
for example the review journal “Progress in low temperature physics”. The ability
to control particles in helium droplets provides new ways of probing the peculiar
nature of superfluid helium [20]. Rotating molecules inside helium droplets may

2



1.2. Superfluid helium and helium nanodroplets
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FIG. 1.1: The pressure-temperature phase diagram of 4He. The red star and
triangle marks the boiling point (4.22 K) and λ-transition point (2.17 K), respec-
tively, of helium at atmospheric pressure. The critical point C is at 5.2 K and
2.3 bar. This diagram is based on data from Ref. 26.

e. g. be a way of inducing quantized vortices. These have long been known to exist
in bulk superfluid helium [21, 22], but were only recently detected in large helium
droplets [23–25]. Helium exists in two isotopes, the bosonic 4He and fermionic
3He. In this thesis, helium, or He without a superscript, refers to 4He. The phase
diagram of helium, shown in Fig. 1.1, exhibits two anomalous features: 1) There
are two liquid phases, He I, which in most respects is a normal liquid, and He II,
which is a superfluid. The λ-line separating the normal and superfluid phases is
named after the shape of the heat capacity curve at the crossing of the line [27].
2) Helium remains liquid all the way up to 25 bar even at absolute zero. These
features are unique1 to Helium and 3He, although 3He is first a superfluid below
3× 10−3 K due to its fermionic nature. The liquidity down to absolute zero is
attributed to the weak van der Waals interaction and the low mass of Helium
and 3He. As a consequence, the de Broglie wavelength exceeds the interatomic
distance, and a large delocalization of the atoms ensue. No crystallization is thus
possible without adding pressure [14, 29]. The superfluidity is thought to be a

1However, parahydrogen is a likely candidate for a new superfluid [28].
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FIG. 1.2: Elementary excitation dispersion curve (fully drawn line) in bulk helium
at a temperature T = 0.4 K at zero pressure. The curve is based on neutron
scattering data [34]. The roton gap is indicated by the red bar. The dashed line
represents excitations that are allowed by momentum and energy conservation
for a particle moving at the Landau velocity vL.

consequence of Bose-Einstein condensation of the helium atoms (or cooper pairs
of atoms in the case of 3He) into a macroscopically occupied quantum state [22,
27, 30–32]. A detailed theory of the connection between Bose-Einsten conden-
sation and superfluidity has not yet been firmly established, however, even after
more than half a century of superfluid helium research. The relatively strong
repulsive interaction between the atoms (compared to dilute Bose gasses) com-
plicates the analysis [33]. The idea that superfluidity stems from Bose-Einstein
condensation has led to a very successful two-fluid description, where superfluid
helium is thought of as two interpenetrating and inseparable liquids [35, 36]. One
of the liquids is the superfluid component, which is inviscid and has zero entropy.
In a simplified picture, the superfluid component corresponds to the condensed
helium (although really, the condensate fraction is only about 10 % even at 0 K,
where the superfluid fraction is 100 %). The other, normal component is a normal
liquid with conventional viscosity. The normal component carries all the entropy
and thermal energy of the liquid, as it’s composed of the elementary, particle-like
excitations called phonons and rotons. The two-fluid model explains the foun-
tain effect, where helium can be cooled by flowing through extremely fine pores
in a porous plug. Since only the superfluid component can flow viscouslessly
through the pores, the thermal energy in the normal component is left behind. A
fountain can be created and sustained by heating the superleaked helium, hence
the name. The two-fluid model also predicts a new heat conduction mechanism
called second sound, where heat is transported as a wave instead of through diffu-
sion [37]. This effect gives superfluid helium its extreme heat conductivity. Film
flow or creep can also be understood in terms of the two-fluid model. There is
a well-executed experimental demonstration video of some of the extraordinary
properties of superfluid helium in Ref. 38.
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FIG. 1.3: Superfluid and normal fluid density fraction of liquid helium at low
pressure and under the superfluid transition temperature Tλ. The ratio is calcu-
lated with Landau’s two-fluid model on the basis of neutron scattering data [34].

The dispersion curve for bulk helium is shown in Fig. 1.2. Phonons are the
excitations with a linear dispersion relation near T = 0 K. The slope of the
phonon dispersion is the speed of sound in He II. Rotons are the excitations near
the characteristic dip at the red bar. At the minimum they are the quantum
mechanical analog of classic atomically small vortex, or “smoke” rings, with the
inner helium moving forwards and the outer helium flowing back around it [39–
42]. The low viscosity of He II can be understood as a consequence of the so-called
roton gap (indicated by the red bar) in the dispersion curve of the elementary
phonon and roton excitations. Together with conservation of energy E and mo-
mentum p and the nonexistence of other available excited states, the roton gap
implies that objects moving with a velocity v, slower than the Landau velocity of
vL = 58 m/s, are unable to induce these excitations. A momentum- and energy
transfer can only occur if the straight line E = vp intersects the excitation curve
(or if the excitation curve lies below the line in the case of a collision in more
than one dimension). Thus, any object moving slower than the Landau velocity
experiences no viscous drag [36, 43]. It is seen that rotons are the first states
to be excited if a particle is accelerated from rest in liquid helium. The Landau
velocity can be calculated as roughly vL ≈ ∆/p0, where ∆ is the minimum roton
energy and p0 is the corresponding momentum. The same kind of elementary
excitation spectrum is also observed in helium nanodroplets [44], and the Landau
velocity has recently been demonstrated to exist in the droplets [20]. Under some
circumstances, viscous drag can be experienced in bulk helium at much lower
velocities, due to the creation of tangles of quantized vortices [45, 46], or even
due to turbulence in the normal component [47], i. e. due to interactions with
already existing excitations.

In a famous experiment, Andronikashvili [48] used an array of closely spaced,
rotating discs to characterize the two-fluid behavior. The normal component of
the helium follows the rotating discs adiabatically due to the viscous forces. This
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1. Introduction

effectively modifies the moment of inertia of the disc array, which is then mea-
sured. As the temperature is lowered, a classical liquid would cause an increase
in the moment of inertia due to the increased viscosity and eventual solidifica-
tion. However, in liquid helium, a sharp drop in the effective moment of inertia is
observed as soon as the λ line is crossed (see Fig. 1.1). This is caused by the con-
version from the normal component to the superfluid, inviscid component, as per
Fig. 1.3. Note that below 1 K, the liquid is almost purely superfluid. In an analo-
gous “microscopic Andronikashvili experiment” [49, 50], Grebenev et al. used an
OCS molecule instead of a stack of discs. They measured the rotationally-resolved
IR spectrum of OCS molecules in helium and 3He nanodroplets. The results are
shown in Fig. 1.4. The rotational spectrum for isolated OCS molecules is shown
in panel a). Note the narrow lines corresponding to transitions between specific
rotational states. In the 4He droplets, the spectrum, shown in panel b), also con-
sists of narrow, but slightly broader lines with linewidths of about 160 MHz. The
interpretation is that the molecules can rotate freely in up to a few nanoseconds.
This long lifetime of free rotation is seen as evidence of superfluidity in helium
nanodroplets. A fit of the line intensities to a Boltzmann distribution gives a
temperature of 0.37 K, which is consistent with previous results [51, 52]. This
indicates that despite the very weak interaction with the helium, the rotational
degrees of freedom equlibrate with the helium bath on a time scale that is shorter
than that of the experiment [14].

The molecule attracts helium atoms stronger than helium itself does. This
causes a local break-up of the superfluid in the vicinity of the molecule. The local
helium atoms attach to the molecule and form a non-superfluid solvation shell that
adiabatically follows the molecule in its rotation. The prominent spectral shift
between panel a) and b) by about 0.6 cm−1 and the reduced linespacing by about
a factor of 2.8 is directly attributable to the moment of inertia contributed by this
solvation shell. The same effect has been demonstrated for a large variety of other
molecules. The moment of inertia is typically increased by about a factor of 3 [14,
15]. Rotational spectra, such as the one in Fig. 1.4 b) are reproduced simply by
adjusting the moment of inertia in a calculation for the isolated molecule.

The result of the same experiment in 3He droplets, shown in panel c) is strik-
ingly different. The 3He droplets are not superfluid, since their temperature of
0.15 K is well above the superfluid transition temperature of 3× 10−3 K. The
sharp lines are absent and the rotational spectrum is significantly broadened,
indicating viscous slowing of the rotation as expected from a normal liquid.

1.3 Motivation and outline

In my PhD project, I have studied laser-induced alignment of molecules in helium
nanodroplets. In this thesis, I present both a theoretical description of the prob-
lem as well as a series of new experiments. The original plan was to provide an
understanding of previous experiments [17, 18], that seemed at odds with spec-
troscopy. For example, the previous results show that the free rotation breaks
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FIG. 1.4: Rotational spectrum of OCS in different cryogenic matrices: a) Isolated
OCS in an Ar seeded beam, b) in 4He droplets consisting of 6000 atoms, and c) in
3He droplets with 1.2× 104 atoms. The arrow in a) and b) indicates the position
of the forbidden Q-branch. Excerpt from Ref. 14.



1. Introduction

down almost immediately, and that a simple adjustment of the moment of inertia
far from suffices in a description of the rotational dynamics. In the beginning
of my studies, I was part of an experiment where CS2 was aligned inside helium
droplets. This experiment showed new, but just as puzzling alignment dynamics
in helium: CS2 rotates freely (and apparently without a solvation shell) for 1-2
ps before the free rotation suddenly breaks down. To understand these results,
I collaborated with Robert Zillich from the Johannes Kepler University in Linz,
Austria. Together, we developed a theoretical model for exploring laser-induced
alignment in the presence of just a single helium atom. The model is described
in chapter 6. As the modeling progressed, it slowly became clear that all of the
previous alignment experiments on molecules in droplets were either done on too
light molecules2 or with laser intensities that were too high. This realization
turned the direction of the research in Femtolab around from looking at increas-
ingly smaller molecules to looking at heaver molecules using weaker alignment
laser pulses. This is contrary to the normal reasoning in alignment of isolated
molecules, where stronger pulses usually lead to better alignment. In chapters
4 and 5, I present new experimental results on alignment of I2 molecules inside
helium droplets. Although alignment of I2 molecules in droplets was done ear-
lier [18], the new experiments presented here are done with both weaker and
stronger pulses. For the stronger pulses, fast dynamics similar to the case of
CS2 is observed. The major result presented here, however, is that the coher-
ent rotation induced by the weaker pulses is so long lived (∼ 0.6 ns) that the
dynamics again resemble free rotation, possibly with a modified moment of iner-
tia. As I am writing this thesis, Benjamin Shepperson and Mette Rasmussen are
in the lab measuring alignment of the much heaver 4,4-diiodobiphenyl (“iodine
with two benzene rings in-between”) inside helium droplets. Although prelimi-
nary, the very promising results already indicate rotational coherence lasting for
several nanoseconds.

During the model development together with Robert Zillich, I have gained a
deep understanding of the quantum mechanical description of alignment. With
this understanding, I was able to resolve a long-standing issue [53] concerning a
discrepancy between the experimental and theoretical characterization of align-
ment. I describe the theory of alignment in chapter 2, where my work on re-
solving this discrepancy is presented in section 2.2. Before I first met Robert, I
re-implemented an alignment simulation program that was originally developed
by Christer Bisgaard [54]. I re-implemented it to make it easier to use and main-
tain, and I made it significantly faster. Since then, I have added a graphical user
interface, and as the first alignment simulation program ever, it can now simulate
alignment in a way that is directly comparable to the result of an experiment.
This has allowed e. g. the first determination of the droplet temperature in Fem-
tolab by direct comparison of theoretical predictions with those obtained in an
experiment (after the effects of the dropet have been deconvolved with a method
developed by Lauge Christensen [55]). The program is presented in chapter 3.

2In the sense that the moment of inertia is too low.
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2
Theory of laser-induced alignment for

isolated molecules

Before delving into laser-induced alignment and rotation of molecules embedded
in helium nanodroplets, it is important to first understand rotation and alignment
of isolated molecules. The theory of molecular alignment is therefore reviewed
below in section 2.1. Historically, due to the superfluid nature of cold helium
and on the basis of rotationally-resolved spectra such as those in Fig. 1.4, it was
anticipated that the alignment dynamics of molecules in helium nanodroplets
could be understood with this theory together with a simple re-scaling of the
molecular moment of inertia. This re-scaling should account for the solvation shell
that adiabatically follows a molecule in its rotation. As will be demonstrated with
the experimental results presented in chapter 5, this is not the case. In chapter
6, the theory presently discussed will be expanded and used to rationalize those
results.

A significant shortcoming of the established theory of alignment is that it
fails to take into account the way most measurements are done in practice. The
widely used observable cos2 θ, where θ is the angle between the laser polarization
and the molecular axis, is actually not available in typical experiments where the
measurement takes place on a 2 dimensional screen. Here, only the angle θ2D is
available. This angle is the angle between the laser polarization and the projec-
tion of the molecular axis on the 2D detector screen. I have contributed to the
theory of alignment of isolated molecules by developing an efficient algorithm for
calculating matrix elements and expectation values of cos2 θ2D, and indeed of any
other observable. The algorithm is easy to add to existing simulation programs.
In my analysis of linear molecules, I have discovered how, under conditions that

9



2. Theory of laser-induced alignment for isolated molecules

are typically met in alignment experiments, 〈cos2 θ〉 can be reconstructed from
〈cos2 θ2D〉 via Fourier analysis. All of this work is presented in section 2.2, and it
forms the basis of a manuscript currently in preparation [A1]. The effects of only
measuring the projected molecular direction has interested me since the beginning
of my PhD study. But I was first provoked into developing the algorithm after an
exciting discussion I had one day with Lauge Christensen and Henrik Stapelfeldt
about a year ago. Lauge had been trying, with some success, to extract 〈cos2 θ〉
from measuring

〈
Z̃2〉, where Z̃ is the coordinate in the detector plane along the

laser polarization (related to Z, the molecular direction coordinate along the laser
polarization, Z2 = cos2 θ. Only an uncalibrated measurement of 〈cos2 θ〉 is avail-
able in this way). I owe Lauge special thanks for his compelling arguments and
encouragement that led me to undertake the analysis.

2.1 Quantum mechanical description

In the following, the quantum mechanical theory of molecular alignment is in-
troduced. The focus of this thesis is on 1D alignment of linear molecules with
laser pulses that are much shorter than the rotational periods of the molecules.
Here, however, 1D alignment of symmetric tops is treated in general, as the de-
scriptions of linear and symmetric tops follow the same structure. The theory
for linear molecules is easily re-obtained by making the substitution K = 0. The
simulation program described in chapter 3 would have been less useful if it could
only simulate linear tops. Neither asymmetric tops, 3D alignment nor orientation
will be introduced. Furthermore, the alignment is assumed to be induced by a
non-resonant laser pulse. For a much more thorough introduction to the whole
topic, the reader is referred to references 1, 5, 54, 56, 57.

Under the Born-Oppenheimer approximation, the Hamiltonian for a molecule
can be written as a sum of a nuclear spin, an electronic, a vibrational and a
rotational term, and the wave function separates into these parts. Under the rigid
rotor approximation, the molecule is further assumed to have a time independent
moment of inertia, e. g. by being in the vibrational ground state, or due to the
fact that vibrations are much faster than rotation. Alignment is mainly concerned
with the rotational part of the wave function. Only in cases where the molecule
has inversion symmetry does the parity of the other parts of the wave function
play a small, but important role that will be discussed later.

The Hamiltonian for a freely rotating, rigid, symmetric top is [58]

Hfree = BJ2/~2 + (A−B)j2
z/~2. (2.1)

Here, J is the angular momentum of the molecule and jz is the component of
the total angular momentum along the molecular axis. For the three principal
moments of inertia Ia ≤ Ib ≤ Ic the rotational constants (in units of energy) are
defined as B = ~2

2Ib
and A = ~2

2Ia
. For an oblate top (Ia = Ib < Ic), A = ~2

2Ic
. This

convention deviates from that of the cited literature, but is justified by enabling
both prolate (Ia < Ib = Ic) and oblate tops to be handled with the exact same
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2.1. Quantum mechanical description

computer code. For linear molecules, there is no rotation about the molecular
axis, and Hfree = BJ2/~2.

The alignment is induced by a linearly polarized, non-resonant laser field

E(t) = E0(t) cos(2πft)Ẑ, (2.2)

where E0(t) is the electric field amplitude at time t, f is the carrier frequency and
Ẑ is the polarization direction. Although the specific pulse shape has no influence
on a general analysis, the pulse intensity is usually assumed to be Gaussian

I(t) = I0 exp(−4 ln(2)((t− t0)/τ)2). (2.3)

The peak intensity I0 occurs at time t = t0 and the pulse duration τ is specified as
the full width at half maximum. At optical frequencies, the period of oscillation
(a few femtoseconds) is much shorter than the rotational period of a molecule,
which is typically on the order of tens to hundreds of picoseconds or more. With
a slowly varying envelope and under the dipole approximation, the interaction
with any permanent dipole moment therefore averages out, and the cycle averaged
molecule-laser interaction potential becomes [57]

V (θ, t) = −E0(t)2

4 (∆α cos2 θ + α⊥). (2.4)

Here ∆α = α‖ − α⊥ is the polarizability anisotropy, and α‖ and α⊥ are the ele-
ments of the polarizability tensor α parallel and perpendicular to the molecular
axis, respectively. It is assumed that a common frame diagonalizes both the iner-
tia and the polarizability tensors. The term (2.4) arises because the laser induces
a dipole moment p = αE(t) that preferentially points along the instantaneous
E-field direction and thus doesn’t average out. The total Hamiltonian for the
rotation of the molecule is then

H = BJ2/~2 + (A−B)j2
z/~2 − E0(t)2

4 (∆α cos2 θ + α⊥). (2.5)

Certain limiting cases of alignment can be understood with classical mechanics.
Classically, the laser exerts a torque τ on the each of the molecules in an ensemble
of initially slowly rotating molecules through the induced dipole interaction (2.4).
The torque is conveniently derived from the Euler-Lagrange equation. The (2D)
Lagrangian is

L(θ, ω, t) = 1
2Iω

2 − V (θ, t), (2.6)

where ω = θ̇ and I is the (scalar) moment of inertia. The torque

τ(t) = d

dt
Iω = d

dt

(
∂L
∂ω

)
= ∂L
∂θ

= −∂V (θ, t)
∂θ

= ∆αE0(t)2

4 sin(2θ), (2.7)

is at a given time maximal when θ = 45◦, and it forces the molecules to align
along the laser polarization at θ = 0. In the impulsive, low temperature limit,
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2. Theory of laser-induced alignment for isolated molecules

classical mechanics accurately describes the early alignment dynamics [59–61].
Impulsive alignment means that the pulse is short enough that the molecules
don’t move for the duration of the pulse. To the extent that sin(2θ) ≈ 2θ is
a good approximation, the torque, and thereby the gained angular velocity, is
proportional to the angular displacement. Molecules initially at rest will therefore
align at the same instant of time, shortly after the pulse. Better alignment can be
achieved if the molecules are somehow pre-aligned, such that the approximation
is good for all molecules. This type of alignment is attractive, because it occurs
in the absence of an external field. It is also the focus of this thesis. In the long
pulse limit, the adiabatically increasing torque will guide the molecules into an
angular trapping potential, causing the molecules to undergo librating motion
about the polarization axis [1, 5, 56]. Typically, higher degrees of alignment are
achieved in this regime.

In the language of quantum mechanics, alignment of a molecule means local-
izing the direction of the molecular axis. A prerequisite for obtaining good align-
ment is therefore a large uncertainty in the angular momentum of the molecule.
In other words, good alignment requires a large superposition of angular mo-
mentum states. To show how the laser induces this broad superposition, the
rotational wave function is first expanded in the angular momentum basis, which
coincides with the field free V = 0 stationary states

|ΨKM (t)〉 =
∑
J

CJKM (t)|JKM〉. (2.8)

Here, J is the angular momentum quantum number, andK andM are the quanta
of the projection of the angular momentum on the z and Z axes, respectively.
Summation over K andM has been omitted, because even during the pulse, both
K and M are conserved. The spatial representation of each |JKM〉 ket is

〈ϕ, θ, χ|JKM〉 = (−1)M−K
√

2J + 1
8π2 DJ

−M,−K(ϕ, θ, χ), (2.9)

where DJ
M,K is a matrix element of the Wigner DJ matrix. The Euler angles ϕ, θ

and χ describe the rotation from the laboratory (space fixed) XY Z frame to the
body fixed xyz molecular frame. The angles θ and ϕ are the polar and azimuthal
angles of the molecular axis, respectively, and χ is the angle of rotation around
the molecular axis. In the case of a linear rotor, K = 0 and the Wigner matrices
reduce to the well-known spherical harmonics [58]

〈θ, ϕ|JM〉 = YJM (θ, ϕ) =
√

2J + 1
4π DJ

−M,0(ϕ, θ, χ). (2.10)

Inserting the expansion (2.8) in the Schrödinger equation and projecting onto
a particular |JKM〉 state yields a coupled system of linear ordinary differential
equations for the expansion coefficients CJKM [2, 54]

i~
∂

∂t
CJKM = HJ

KC
J
KM +

∑
J′

CJ
′

KM 〈JKM |V (θ, t)|J ′KM〉, (2.11)

12



2.1. Quantum mechanical description

where
HJ
K = BJ(J + 1) + (A−B)K2 (2.12)

is the energy eigenvalue of the |JKM〉 state and

〈J ′K ′M ′|V (θ, t)|JKM〉 = −E
2
0(t)
4

(
∆α〈J ′K ′M ′| cos2 θ|JKM〉+ α⊥δJ′JδK′KδM ′M

)
(2.13)

are the matrix elements of the interaction potential. A neat trick [54] for obtaining
the matrix elements of cos2 θ involves the Gaunt coefficient [58]∫

DJ′′

M ′′,K′′(Ω)DJ′

M ′,K′(Ω)DJ
M,K(Ω)dΩ = 8π2

(
J J ′ J ′′

K K ′ K ′′

)(
J J ′ J ′′

M M ′ M ′′

)
.

(2.14)

Here Ω = ϕ, θ, χ and dΩ = sin θ dθ dϕ dχ. By inserting

cos2 θ = 2
3D2

0,0(θ) + 1
3 , (2.15)

a formula for the matrix elements emerges

〈J ′K ′M ′| cos2 θ|JKM〉 =

(−1)M−K 2
3
√

(2J + 1)(2J ′ + 1)
(

J J ′ 2
K −K ′ 0

)(
J J ′ 2
M −M ′ 0

)
+ 1

3δJ
′JδK′KδM ′M . (2.16)

As asserted above, the selection rules for the 3j-symbols1 in (2.16) implies that
K and M are uncoupled, i.e.

〈J ′K ′M ′| cos2 θ|JKM〉 ∝ δK′KδM ′M . (2.17)

Furthermore, only transitions with ∆J = 0,±1,±2 are allowed. For linear
molecules K = 0 only ∆J = 0,±2 transitions are allowed.

Armed with these selection rules, the coupled equations (2.11) for the expan-
sion coefficients in the angular momentum basis can now be understood qualita-
tively. First, when the laser is off, V = 0 and the equations are not coupled at
all. Their solutions are simply those of stationary states in general, i. e. complex
phase factors CJKM (t) = exp(−iHJ

K(t−t0)/~)CJKM (t0) with an angular frequency
of ω = HJ

K/~ that increases quadratically with the angular momentum quantum
number. Suppose now that the system starts out with all population in the
ground state C0

00 = 1. For a linear molecule, when the laser is turned on, in
the first small time step dt, some population will be transferred to the |200〉
state. The amount depends on the strength of the laser field. In the next small

1The 3j-symbols are proportional to the Clebsch-Gordan coefficients but obey more sym-
metry rules. For an excellent introduction to the topic, see the book of Zare [58].
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2. Theory of laser-induced alignment for isolated molecules

time step, more population will be transferred to the |200〉 state from the ground
state. However, some of the population in the |200〉 state will transfer back to
the ground state (with approximately the opposite sign if the time step is short
enough due to the two factors of −i involved), and some will transfer up to the
next excited state |400〉. This chain of population transfers continues forming
a broader and broader angular momentum wave packet. Finally the phase evo-
lution of the highest populated states become so fast, that contributions from
lower states tend to average out. This balance between the coupling strength
(proportional to laser intensity) and phase evolution (proportional to state en-
ergy) determines how broad the wave packet can become. Note that this is what
could be expected even without knowing the coupled equations (2.11). The width
of the induced wave packet should depend on the energy that the laser is able to
pump into the rotation. Even though a broad wave packet is necessary, it is not
sufficient for alignment. The relative phases of the expansion coefficients must
lead to a collective maximum in the degree of alignment 〈cos2 θ〉 for alignment
to occur. In section 2.2.2, it will among other things be shown how the phases
imprinted by a δ kick [59–61] causes the alignemt trace 〈cos2 θ〉(t) to become a
sum of sines.

The quantum mechanical theory above generally predicts the alignment dy-
namics accurately. However, it is interesting to revisit the adiabatic limit men-
tioned above, where the pulses are long and where the alignment at the peak of
the pulse is of main interest. In this regime, the adiabatic theorem of quantum
mechanics implies that the field free stationary states adiabatically turn into the
corresponding eigenstates of the full Hamiltonian (2.5), known as pendular states,
and back to the original states (up to a geometrical phase [62]) after the pulse.
A simpler theory of alignment in this regime is based on the time independent
Schrödinger equation at the peak of the alignment pulse [1, 5, 54, 56, 57]. In
molecular alignment, a distinction is made between adiabatic and nonadiabatic2
alignment. Nonadiabatic alignment simply refers to a situation that is not adia-
batic, but it is often used interchangeably with impulsive alignment, which is the
opposite limit of adiabatic alignment. The alignment dynamics in the two limits
are quite dissimilar. This thesis is primarily concerned with impulsive alignment.

2.2 Characterizing alignment: 〈cos2 θ〉 vs 〈cos2 θ2D〉
The degree of alignment is characterized by 〈cos2 θ〉. Coincidentally, the molecule-
laser interaction potential (2.4) involves a factor cos2 θ, so the matrix elements of
cos2 θ are already available from (2.16). Given the state vector |Ψ(t)〉 expressed
as expansion coefficients, it is then a simple matter to evaluate the degree of
alignment as the vector-matrix-vector product〈

cos2 θ
〉

(t) = 〈Ψ(t)| cos2 θ|Ψ(t)〉. (2.18)

2Strictly, diabatic is the antonym of adiabatic. Perhaps nonadiabatic won because the
pronunciations are too similar.
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Experimentally, as will be seen in chapters 4-5, the degree of alignment is char-
acterized by Coulomb exploding the molecules. An intense femtosecond laser
pulse multiply ionizes the molecules and the emission directions of the recoiling
ionized fragments are recorded with a velocity map imaging (VMI) spectrometer.
In the VMI, the charged fragments are accelerated by the electric field between
two capacitor plates onto a 2 dimensional (2D) micro-channel plate detector in
front of a phosphor screen. The situation is summarized in Figure 2.1. As is
evident from the figure, in the experiment, the degree of alignment is not charac-
terized by 〈cos2 θ〉, but by 〈cos2 θ2D〉, i. e. by the same expectation value but for
the projected molecular angle instead. Under some conditions, it is possible to
invert the measured 2D angular distribution to its 3D counterpart by employing
what is known as an Abel inversion [63]. In this way, 〈cos2 θ〉 can be measured
experimentally. The main drawback with the Abel inversion technique is that it
requires high statistics (i. e. a large number of detected ions) to be feasible. This
limits the practical applicability of the method to usually only inverting a few
selected times in a recorded 2D alignment trace 〈cos2 θ2D〉(t).

Here, an alternative approach is proposed. Instead of inverting a 2D mea-
surement, the 2D result is calculated for direct comparison with the experiment.
This requires some extension of the theory, but as will be shown in section 2.2.3,
it also leads to a new and much more efficient method for inverting recorded 2D
alignment traces. That method is efficient because it works directly on a recorded
2D trace, and thus avoids working with distributions altogether.

The coordinate system chosen above is such that the Euler angles θ and ϕ
can be identified as the standard polar and azimuthal spherical coordinates of the
molecular z-axis, respectively. In the lab frame XY Z, the unit vector pointing
along z is therefore ẑ = (sin θ cosϕ, sin θ sinϕ, cos θ). In the experiments, the
alignment laser polarization is always in the plane of the detector. In a plane
perpendicular to the polarization, the ion images have cylindrical symmetry due
to the linear laser pulse, and will not show the alignment. For concreteness,
therefore, but without loss of generality, the plane of the detector is taken to be
parallel to the X = 0 plane. The angle θ2D is between the Ẑ direction and the
projection z2D = (0, sin θ sinϕ, cos θ). From the dot product cos θ = Ẑ · z2D =
||Ẑ|| ||z2D|| cos θ2D it is seen that

cos2 θ2D = cos2 θ

cos2 θ + sin2 θ sin2 ϕ
. (2.19)

Having the detector parallel to the Y = 0 plane means replacing sin2 ϕ with cos2 ϕ
in (2.19). However, choosing either plane, or indeed any plane containing the Z
axis, leads to the same matrix elements. As will be shown below, the cylindrical
symmetry causes any ϕ dependence to be integrated out. The choice of plane
will matter, though, if the laser pulse is not linearly polarized. It is apparent that
cos2 θ2D ≥ cos2 θ since ||z2D|| ≤ 1. A 2D alignment measurement will therefore
always overestimate the actual degree of alignment.
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FIG. 2.1: The coordinate system. The detector screen spans the laboratory fixed
ZY plane. The linear molecule is aligned by a linear laser pulse, polarized along
the Z axis. The polar and azimuthal angles θ and ϕ parameterize the orientation
of the molecule fixed z axis with respect to the laboratory fixed coordinate system
XY Z. The measurement projects the polar angle θ into the polar angle θ2D in
the detector plane.



2.2. Characterizing alignment: 〈cos2 θ〉 vs 〈cos2 θ2D〉

2.2.1 Matrix elements

Given the matrix elements of cos2 θ2D, it is again a simple matter of calculating
a vector-matrix-vector product to obtain the 2D degree of alignment〈

cos2 θ2D
〉

(t) = 〈Ψ(t)| cos2 θ2D|Ψ(t)〉. (2.20)

In a similar way as for the matrix elements of 〈cos2 θ〉, the matrix elements of any
observable O(ϕ, θ, χ) can be calculated efficiently by expanding O in the |JKM〉
basis,

O(Ω) =
∑
JKM

aJM,K 〈Ω|JKM〉

=
∑
JKM

aJM,K(−1)M−K
√

2J + 1
8π2 DJ

−M,−K(Ω) (2.21)

and using the Gaunt coefficient trick on each of the terms in the expansion. The
expansion coefficients are

aJM,K =
√

2J + 1
8π2

∫
DJ
M,K(Ω)O(Ω)dΩ. (2.22)

Inserting the expansion (2.21) into the matrix element bracket 〈O〉 and applying
equations (2.9) and (2.14) yields3

〈J ′K ′M ′|O|JKM〉 = (−1)M−K
√

(2J + 1)(2J ′ + 1) ×∑
J′′K′′M ′′

(−1)M
′′−K′′aJ

′′

M ′′,K′′

√
2J ′′ + 1

8π2

(
J J ′ J ′′

−K K ′ −K ′′
)(

J J ′ J ′′

−M M ′ −M ′′
)
.

(2.23)

The matrix elements 〈J ′K ′M ′|O|JKM〉 for K 6= K ′ or M 6= M ′ are not in
general zero, as is the case with 〈J ′K ′M ′| cos2 θ|JKM〉 ∝ δK′KδM ′M . However,
it is always true that 〈J ′K ′M ′| cos2 θ2D|JKM〉 ∝ δK′,K , since Wigner matrices
with different K have zero overlap, and the angle θ2D does not depend on χ
(any projection of the vector ẑ = (sin θ cosϕ, sin θ sinϕ, cos θ) onto a space fixed
plane does not involve χ. Physically, any vector is unchanged by a rotation about
an axis along the vector). The χ dependence of a Wigner matrix is contained
in a separate factor, so anything that does not depend on χ cannot change the
proportionality of a bracket with δK′K . Furthermore, as noted above, a linear
laser pulse never changes K or M . A good anzats for simulation purposes is that
the initial state or ensemble member is stationary4 |ΨKM 〉0 = |JKM〉 with a
definite K and M . Expansion coefficients CJ′K′M ′ with K 6= K ′ or M 6= M ′ are

3A more detailed derivation can be found in appendix A.1.
4Random phases in the initial superposition would add incoherently in an ensemble anyway.
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therefore always zero. The expectation value is then

〈ΨKM (t)|O|ΨKM (t)〉 =
∑

J′JK′KM ′M

CJ
′

K′M ′(t)CJKM (t)〈J ′K ′M ′|O|JKM〉

=
∑
J′J

CJ
′

KM (t)CJKM (t)OJ′JKM . (2.24)

Regardless of the values of the observable matrix elements, only those with the
K and M values of the initial state will matter, because the rest end up being
multiplied with expansion coefficients that are all zero5. Only the matrix elements

OJ′JKM = 〈J ′KM |O|JKM〉 (2.25)

survive. These observations significantly reduce the number of matrix elements
that must be calculated and stored.

By inserting K ′ = K and M ′ = M in (2.23) and using the symmetry proper-
ties of the 3j symbols, an expression for OJ′JKM is obtained

OJ′JKM = (−1)(M−K)

4π3/2

√
(2J + 1)(2J ′ + 1)

×
∑
J′′

aJ′′
√

2J ′′ + 1
(

J J ′ J ′′

−K K 0

)(
J J ′ J ′′

−M M 0

)
. (2.26)

Here, the reduced expansion coefficient aJ is introduced as

aJ ≡
√

2π · aJ0,0 (2.27)

=
√

2J + 1
4π

∫
PJ(cos θ)O(Ω)dΩ (2.28)

=
√

2J + 1
4π

∫ 1

−1
duPJ(u)

∫ 2π

0
dϕ

∫ 2π

0
dχ O(ϕ, u, χ) (2.29)

i. e. aJ is the expansion coefficient in Legendre polynomials PJ(u) of O, where
the χ and ϕ dependence has been integrated out. The normalization is chosen
such that the Legendre polynomials can be identified as the spherical harmonics
YJ0(θ, ϕ), which are more stable to evaluate numerically. In the last line (2.29),
the substitution u = cos θ, du = − sin θdθ has been inserted. Due to the symme-
try properties of the 3j symbols, the sum over J ′′, M ′′ and K ′′ in (2.23) collapses
into a sum only over J ′′ where K ′′ = K −K ′ and M ′′ = M −M ′. For the case
of a linearly polarized pulse, then, only the terms with M ′′ = K ′′ = 0 need to
be evaluated. In numerical simulations, the infinite |JKM〉 basis is truncated at
some maximal J = Jmax. Due to the J ′′ ≤ J + J ′ selection rule of (2.26), only
the expansion coefficients up to J = 2Jmax are then required in a simulation.
Remarkably, the symmetry of the laser interaction makes it unnecessary to know
the entire observable in order to calculate its expectation value. Only a small set
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2.2. Characterizing alignment: 〈cos2 θ〉 vs 〈cos2 θ2D〉

J O = cos2 θ O = cos2 θ2D

0 1/3 5.000 000 000 000× 10−1

2 2/3 6.250 000 000 000× 10−1

4 −1.875 000 000 000× 10−1

6 1.015 625 000 000× 10−1

8 −6.640 625 000 000× 10−2

10 4.785 156 250 000× 10−2

12 −3.662 109 375 000× 10−2

14 2.920 532 226 563× 10−2

16 −2.400 207 519 531× 10−2

18 2.018 356 323 242× 10−2

Table 2.1: First 10 nonzero reduced expansion coefficients aJ , each multiplied
with

√
2J + 1/4π3/2, for the observables O = cos2 θ and O = cos2 θ2D (see text).

For odd J , aJ = 0.

of its reduced expansion coefficients are required. In particular, it is not necessary
to know which plane the detector is in for the case of O = cos2 θ2D.

The numerical evaluation of the integral (2.29) together with the evaluation
of the 3j symbols in (2.26) is easily more than 1000-fold less computationally
demanding than naively evaluating 〈J ′KM |O|JKM〉 through its definition as a
triple-integral over 2 Wigner D matrices and O. The same set of 2Jmax reduced
expansion coefficients is used for all the matrix elements, whereas the direct
application of the definition requires evaluating a new triple-integral for each
of the roughly J2

max ×Mmax × Kmax required matrix elements. The definition
also involves an integrand consisting of two associated Legendre polynomials PMJ
and PMJ′ even when K = 0, instead of just one as in (2.29). Not only does
this lead directly to further costly evaluations of Legendre polynomials, but the
more complicated integrands require more evaluations for the same quadrature
accuracy.

The reduced expansion coefficients aJ are calculated with the adaptive 61
point Gauss-Kronrod quadrature rule from GSL [64] with absolute and relative
error tolerances set to 10−13. This allows numerical errors in at most 3 of the
least significant digits out of the (roughly) 16 available in double precision. For
comparable accuracy, the trapezoidal and Gauss-Legendre quadrature rules are
found to be infeasible. For O = cos2 θ2D, the evaluation of all the reduced ex-
pansion coefficients aJ up to J = 100 takes about 170 ms on a normal laptop
computer. This is more than 10 times slower than solving the Schrödinger equa-
tion (2.11). However, it must only be done once. The Schrödinger equation must
be solved for each ensemble member and for each focal volume intensity shell, as
detailed in section 3.2. The 10 most significant reduced expansion coefficients of

5This seems like an elaborate way of stating 0 ·X = 0. But the 0’s can be hard to recognize.
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FIG. 2.2: Graphical matrix representation of 〈J ′00| cos2 θ2D|J00〉 for J up to 80.
In the left panel, the absolute value of each matrix element is plotted. In the right
panel, the base 10 logarithm of the absolute value of each element is plotted.

cos2 θ and cos2 θ2D are listed in table 2.1. Here, they are each multiplied with a
normalization factor NJ =

√
2J + 1/4π3/2, such that6

〈O〉 =
〈∑

J

NJaJDJ
0,0

〉
. (2.30)

The middle column is thus a direct consequence of equation (2.15). As the
3j symbol with all zeros evaluates to 1, it is easy to verify by inserting the
first row of the table into equation (2.26), that the implementation calculates
〈000| cos2 θ2D|000〉 = 0.5± 10−14. This is in agreement with the expectation that
a randomly oriented molecule has

〈
cos2 θ2D

〉
= 1/2. Similarly, 〈000| cos2 θ|000〉 =

1/3. The coefficients for odd J are all zero because cos2 θ2D is even. When the
bottom row of a 3j symbol is all 0’s, the sum of the top row must be even. Thus
wheneverM = 0 orK = 0, the odd bands in the matrix representation O(J+2n+1)

JKM

are all zero, since j′′ must then be even in (2.26).
The textbook formulas for 3j symbols suffer from catastrophic cancellation and

are numerically unstable [58, 65]. On the finite precision arithmetic implemented
in modern CPUs (IEEE 754 double-precision), they fail even for moderately large
quantum numbers. In this thesis, the 3j symbols are evaluated accurately and
efficiently using the J recursion relation from reference 66. The Fortran 77 routine

6This does not mean that O =
∑

J
NJaJDJ

0,0 !
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2.2. Characterizing alignment: 〈cos2 θ〉 vs 〈cos2 θ2D〉

drc3jj for the evaluation of the recursion relation was downloaded from reference
67, and appears to have the same authors as reference 66. It is noted that a newer,
simplified technique for calculating 3j symbols exactly [68] and an efficient storage
scheme based on Regge symmetry [69] is available. However, pre-calculating the
O matrix representation takes at most a few seconds, even for larger molecules,
and only ever has to be done once, so these improved methods are not explored.

The |J − J ′| ≤ J ′′ ≤ J + J ′ selection rule helps visualizing the matrix repre-
sentation (2.26) of O. The diagonal J = J ′ contains contributions from all the
reduced expansion coefficients aJ′′ . The n’th bands with |∆J | = |J − J ′| = n
contains contributions from all but the n first reduced expansion coefficients. If
aJ′′ is negligible for J ′′ > Jthr, where Jthr is some threshold J value, then only
the last expansion coefficient aJthr contributes the Jthr’th band, and all higher
bands |∆J | > Jthr are negligible. As can be seen from table 2.1, the coefficients
aJ for cos2 θ2D quickly falls off. As expected, the bands in the matrix representa-
tion of cos2 θ2D, shown in Fig. 2.2, therefore quickly diminish in magnitude away
from the diagonal. As a good approximation, cos2 θ2D obeys the selection rule
∆J = 0,±2,±4 for K = 0.

Remarkably, the matrix elements in each band seem to converge quickly as
J increases. This is in fact a general feature of the matrix elements OJ+∆J

JKM for
different K and M . For fixed J ′′ and M ′′, as J, J ′ →∞ with fixed J ′ − J = ∆J
and J ′ − |M ′| → ∞, the asymptotic formula [70]

√
J + J ′ + J ′′ + 1

(
J J ′ J ′′

M M ′ M ′′

)
→ (−1)J

′′−J−M ′dJ
′′

∆J,−M ′′(ξ) (2.31)

relates the 3j symbols to the reduced Wigner rotation matrices dJM,K(ξ). Here,
cos ξ = M ′

J′+1/2 → 0. The argument to the Wigner matrix converges. Therefore,
the Wigner matrix also converges. Using (2.31) twice it can be seen that the
matrix elements OJ+∆J

JKM in (2.26) converge as J → ∞. Earlier, this convergence
was proven for O = cos2 θ by e. g. Seideman [2] and in the thesis of Bisgaard [54].
Their argumentation is worth revisiting and generalizing. Assuming that the
reduced expansion coefficients aJ are all zero for J > 2, as is the case for cos2 θ,
the leading order term of the matrix elements (2.26) scale as J0, J−2 and J0 for
∆J = 0, 1, 2, respectively. This can be seen by inserting the analytical expressions
for 3j symbols found in table 2.5 in Zare [58]. The most important of these
expressions are also given in the equations (3.1)-(3.4) below. So e. g. for O =
cos2 θ the ∆J = 0,±2 bands converge to a nonzero value, and the ∆J = ±1
bands converge to zero.

The general case of evaluating 〈cos2 θ2D〉 for an asymmetric top has still not
been rigorously analyzed. However, an asymmetric top wave function is just a
linear combination of symmetric top basis functions, only where K is no longer
a good quantum number [58]. It is conceivable that the matrix elements in
(2.23) are already sufficiently well determined to be useful in a calculation for
an asymmetric top, and e. g. only a change of basis is required. In the thesis of
Christer Bisgaard [54], the asymmetric top wave function is propagated in the
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2. Theory of laser-induced alignment for isolated molecules

eigenstates of the Hamiltonian after the pulse, and transformed back into the
|JKM〉 basis whenever an expectation value must be calculated.

To summarize, the matrix elements, and thereby the expectation value of an
observable, e. g. cos2 θ2D, can be evaluated efficiently with the following algorithm:

1. Choose a suitable basis size with a maximum J quantum number Jmax.

2. Evaluate the first 2Jmax reduced expansion coefficients aJ numerically with
equation (2.29). The adaptive 61 point Gauss-Kronrod quadrature rule is
highly suited for this task. For calculating 〈cos2 θ2D〉 only the first aJ are
required if high order bands in the matrix representation are neglected.

3. For each fixed K and M quantum number required, evaluate and store the
matrix elements OJ′JKM with formula (2.26). Care should be taken when
evaluating the 3j symbols, since common formulae are numerically unstable.

4. Whenever an expectation value is required, evaluate it with equation (2.24).

2.2.2 Explorative spectral analysis of alignment traces
In this and the following section, the Fourier spectra of 〈cos2 θ2D〉 and 〈cos2 θ〉 are
analyzed. Among other things, this leads to a better qualitative understanding of
alignment dynamics in general than in the preceding discussion. Most, if not all
results concerning 〈cos2 θ〉 are already well-known. I do the derivation from the
beginning anyway to highlight the similarities and differences between 〈cos2 θ2D〉
and 〈cos2 θ〉.

Perhaps the first motivation for studying 〈cos2 θ2D〉 theoretically in Femtolab
appears in the thesis of Jens Hedegaard Nielsen [53]. Jens tried to assess the state
purity in a state selected molecular beam by looking at the Fourier transform
of an alignment trace. With 〈cos2 θ〉, this can be done with linear molecules
because cos2 θ only couples neighboring pairs of states with the same parity. The
frequencies arising from states with another parity should thus not be present.
In his efforts, Jens was frustrated enough to write this call to action:

“However as we do not measure the full angular distribution but only
the 2D projection of the ion distribution, a complication arises that
really should be investigated further.”

Jens went on to write

“Furthermore it is either needed to use a probe technique that is
sensitive to the full angle or at least do a more detailed investigation
of the influence of only measuring the 2D projection.”

This and the following sections may be seen as a response to Jens’ call for further
investigation.
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2.2. Characterizing alignment: 〈cos2 θ〉 vs 〈cos2 θ2D〉

It is apparent from simple uniform circular motion on the unit sphere in the
Z = 1/

√
2 plane, characterized by a constant polar angle θ = 45◦, that the

projected motion in the X = 0 detector plane is characterized by a periodic
and time dependent polar angle θ2D. The periodicity is that of the circular
motion. This extra frequency comes from the dynamics in the ϕ angle. Clearly,
the projection has the potential to introduce new frequencies. This example is
slightly misleading, as the rotation of the individual molecules in 1D alignment
takes place in a plane containing the polarization axis Z. This example was
for motion in a plane perpendicular to the Z axis. However, as will be shown,
new frequencies are actually introduced in 〈cos2 θ2D〉 traces that are not present
in 〈cos2 θ〉 traces. Furthermore, the amplitudes of the spectral components of
〈cos2 θ〉 are modified by the projection.

After the pulse, an analytic expression for the alignment trace 〈O〉 (t) based
on equation (2.24) is

〈O〉 (t) =∑
J′J

|CJKM ||CJ
′

KM |OJ
′

JKM exp
(
−2πimJ

J′(t− t′)/Trev + i(φJKM (t′)− φJ′KM (t′))
)

(2.32)

where Trev = h/2B is the revival time, t′ is an arbitrary but fixed time after the
pulse and

mJ
J′ = J(J + 1)− J ′(J ′ + 1)

2 (2.33)

is an integer since J(J + 1) is always even. Equation (2.32) can be seen as a gen-
eralization of a result obtained by Bisgaard [54] for O = cos2 θ. The phase and
magnitude of CJKM (t′) after the pulse at t = t′ are φJKM (t′) and |CJKM |, respec-
tively. After the pulse, the magnitudes do not depend on time. The field-free evo-
lution of the expansion coefficients CJKM (t) = CJKM (t′) exp

(
−iHJ

K(t− t′)/~
)

=
|CJKM | exp

(
−iHJ

K(t− t′)/~ + iφJKM (t′)
)
has been inserted to obtain (2.32). Evi-

dently, the alignment trace is periodic with a period Trev and (2.32) is an expan-
sion in the Fourier basis

〈O〉 (t) =
∞∑

n=−∞
cn exp(iωnt). (2.34)

The harmonic number n is related to the angular frequency by ωn = n · 2π/Trev.
The Fourier coefficient is given by

cn = 1
Trev

∫ t′+Trev

t′
〈O〉 (t) exp(−i2πnt/Trev)

=
∑
J′J

δn,mJ
J′
|CJKM ||CJ

′

KM |OJ
′

JKMe
i∆φJ′

JKM (t′) (2.35)

Here ∆φJ′JKM (t′) = φJKM (t′)−φJ′KM (t′). It should be noted that the Fourier series
(2.35) is only for a state with definite K and M , and not e. g. for an ensemble.
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2. Theory of laser-induced alignment for isolated molecules

A qualitative understanding of alignment traces in the impulsive limit gleams
off of equation (2.32). With a δ kick pulse [59–61] acting on the ground state
|000〉, there is no phase evolution during the pulse, so all phases φJ′JKM would
be identical at t = 0 immediately after the pulse. Taking t′ → t+0 = 0, the sum
(2.32) would then turn into a sum of cosines (and a constant term), since mJ

J′

changes sign under exchange of J ′ and J , and the real, Hermitian OJ′JKM does
not. However, a relative phase φJ+2

KM (t′) − φJKM (t′) = −i is introduced by the
factor i in the equations (2.11) (neglecting the first term on the right hand side),
so the sum is actually over sines. As the pulse strength increases, higher J states
become populated, and the first peak of alignment moves closer to t = 0, since
the sines have increasing frequency, each an integer multiple of the fundamental
frequency. Note that the analysis is more complicated for initial states with
|KM | > 0, since the parity changing ∆J = ±1 matrix elements (2.26) are then
also in play. It may help, however, that they converge to 0, as noted above.

Generally, the power spectrum P (ωn) = |cn|2 of 〈O〉 (t) consists of a series
of peaks, each at a discrete angular frequency ωn, n = mJ

J′ corresponding to
the energy differences between pairs of populated states. The amplitudes of
the peaks are given by the populations |CJ′KM |2|CJKM |2 of the states multiplied
with the square of the matrix element OJ′JKM coupling them, along with a phase
relation in case more than one pair of states contribute to the same spectral
component. The DC term c0 in (2.35) involves only the diagonal OJJKM . All the
time dependence of 〈O〉 (t) involves only the off-diagonal matrix elements. As
noted above, the band OJJKM generally converges as J increases. The permanent
alignment level (i. e. the DC term) therefore also converge in general as the laser
moves population to higher J states. This can be seen by from (2.35). The DC
term becomes c0 =

∑
J |CJJKM |2O∞∞KM = O∞∞KM . If K = M = 0, c0 → 1

2 for
〈cos2 θ〉 [2]. For 〈cos2 θ2D〉, c0 → 0.6366 . . . This means that for cold molecules
subjected to short, intense alignment pulses, 〈cos2 θ2D〉 is centered around a value
of roughly 0.64, and 〈cos2 θ〉 is centered around a value of roughly 0.5. The first
few diagonal matrix elements of cos2 θ2D for low M can be seen in Fig. 2.3. It
appears that the matrix elements all converge towards the same limit as J →∞
as long asM is held fixed. This is in fact case, since the ξ angle in (2.31) converges
to 0 independently on M ′ (but does so slower with increasing |M ′|).

2.2.3 Reconstruction techniques based on Fourier analysis
Consider now the case O = cos2 θ for a linear molecule, or more generally a
symmetric top starting out in a K = 0 or M = 0 state, e. g. the ground state.
The aim is first to reproduce and explain known alignment behavior, and to show
how the rotational wave packet can be reconstructed from such a trace. The
matrix elements (2.16) are all zero except when J ′ = J ± 0, 2. This means that
only the pairs of states J and J ± 2 contribute in the sum (2.35) for n 6= 0. For
the positive frequencies J > J ′, the observable cos2 θ admits harmonic numbers
n = mJ+2

J = 2J+3, corresponding to the frequencies ω = 2B(2J+3)/~. However,
the real frequency spacing is 8B/h = 4/Trev (or ∆n = ±4) due to the ∆J = 0,±2
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FIG. 2.3: The diagonal matrix elements 〈J0M | cos2 θ2D|J0M〉 for M =
0,±1,±2,±3,±4. These values contribute directly as the permanent alignment
level for each |J0M〉 state.

rule of the laser interaction (2.13). The laser interaction changes J in steps of
2, so only every other frequency admitted by cos2 θ shows up. For example
frequencies corresponding to J ′, J = 4, 6 appear, while frequencies corresponding
to J ′, J = 3, 5 does not, or vice versa if the initial state had an odd J . This
constant frequency spacing gives rise to beats, or revivals at times t ≈ 0 · Trev/4,
1 · Trev/4, 2 · Trev/4, 3 · Trev/4 and 4 · Trev/4 etc. These beats are known as
the prompt alignment, the 1/4 revival, the 1/2 revival, the 3/4 revival and the
full revival, respectively. The phenomenon of revivals is analogous to pulses
from mode-locked lasers [71] for example. They appear as a consequence of the
quantization of angular momentum. An example of these revivals is shown for
CS2 in Fig. 2.4a). From the corresponding Fourier series, shown in Fig. 2.4c), the
expansion coefficients CJKM (t) can be inferred by solving the nonlinear system of
equations (2.35) e.g. for even J

O0
2KM |C2

KM ||C0
KM |ei∆φ

0
2KM (t′) = c3

O2
4KM |C4

KM ||C2
KM |ei∆φ

2
4KM (t′) = c7

O4
6KM |C6

KM ||C4
KM |ei∆φ

4
6KM (t′) = c11

...

OJm−2
JmKM

|CJm
KM ||CJm−2

KM |ei∆φ
Jm−2
JmKM

(t′) = c2Jm+3 (2.36)
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FIG. 2.4: Degree of alignment 〈cos2 θ〉 a) and 〈cos2 θ2D〉 b) for CS2 after a 300 fs,
10 TW/cm2 pulse, starting from the ground state |000〉. The corresponding power
spectra |cn|2 are shown in c) and d), respectively. The frequency is f = n/Trev =
n · 6.54 GHz. Panels d) and e) show the same spectrum. In panel d), lines are
drawn between neighboring points, as is a usual when plotting. In e), lines are
drawn between points n = 4Ni+ 2N2 +N , where ∆J = 2N and i = 0, 1, 2, . . ..
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where |JmKM〉 is the highest populated state. Each phase factor ei∆φJ′
JKM (t′) is

clearly identical to the phase of the Fourier coefficient c2J+3 multiplied by the
sign of OJ′JKM . The above Jm/2 equations and the normalization condition∑

J

|CJKM |2 = 1 (2.37)

may then be enough to uniquely determine the remaining7 Jm/2+1 unknowns. A
strategy for solving the system of equations could e. g. be using the nonlinear least
squares method, i. e. numerically minimizing the sum squared difference between
the left- and right-hand side of the above equations by varying |CJKM | ≥ 0.
There must be at least one solution corresponding to the actual magnitudes of
the expansion coefficients. That solution fixes the expansion coefficients up to
an unimportant overall phase factor. Thus the entire wave function may be
reconstructed from the Fourier series of a single period of a

〈
cos2 θ

〉
trace. If the

Fourier series is not taken over exactly one revival time, the amplitudes cn leak
into neighboring frequencies. This has happened to a small degree in Fig. 2.4c).
Reconstruction of the wave packet in this way relies on the assumption that the
system starts in a pure state with definite K,M and K ×M = 0. For mixed
states (i.e. statistical ensembles), the peaks in the power spectra coincide. This
results in more unknowns than equations. In this project, no experiments have
been performed on state-selected molecules, and only the 2D degree of alignment
is measured. This reconstruction technique has therefore not yet been tried in
practice. This problem is similar to the one Jens Hedegaard Nielsen encountered.

For a generalized linear molecule K ×M = 0, the Fourier spectrum (2.35)
of
〈
cos2 θ2D

〉
is now made up of couplings ∆J = 0,±2,±4,±6, . . ., since the

matrix representation contains many bands. From equation (2.29) and table 2.1
it is seen that the expansion coefficients decrease as J increases. Higher order
Legendre polynomials tend to be more oscillatory than lower order polynomials,
so the expansion of the relatively slowly varying cos2 θ2D dies out as J increases.
Couplings with low J therefore still dominate. The ∆J = ±2 coupling leads
to the same frequencies as for 〈cos2 θ〉, with a modified amplitude due to the
different numerical value of the matrix elements. The ∆J = ±4 coupling leads
to new positive frequencies ω = 2B(4J + 10)/~, or n = 4J + 10, none of which
overlap the ∆J = ±2 frequencies n = 2J+3. They are regularly spaced with a real
frequency spacing of 16B/h (∆n = ±8). This is twice the spacing of the ∆J = ±2
coupling, and gives rise to a new series of 1/8 revivals with a smaller amplitude
due to the smaller matrix elements in the ∆J = 4 diagonal. Similarly, higher
order couplings lead to 1/12, 1/16, 1/20, etc. revivals, diminishing in strength due
to the decreasing magnitude of the expansion coefficients. An example 〈cos2 θ2D〉
trace is shown in Fig. 2.4b). The new series of frequencies are captured in the
corresponding power spectrum in Figs. 2.4d) and 2.4e). The 1/12 and higher order
revivals are typically not observed in experiments because they are small and fast,

7Each vanishing Fourier coefficient determines that one of the unknowns are zero from
e. g. its non-vanishing neighbor coefficients.
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2. Theory of laser-induced alignment for isolated molecules

and they resemble noise. Generally, the ∆J = 2N, N = 1, 2, 3, . . . coupling of the
observable introduces new positive harmonics at n = 2NJ + 2N2 +N , as can be
seen by inserting ∆J = 2N in (2.33). The laser pulse always changes J in steps
of 2, so the observed harmonics are n = 4Ni+2N2 +N (+2N if J is odd), where
i = 0, 1, 2, . . . The ∆J = 10 series of frequencies is the first one to overlap with
just a few of the ∆J = 2 series of frequencies. The ∆J = 6 series for odd J is
the first to overlap a few of the ∆J = 2 series of frequencies for even J . This can
safely be neglected, though, since the amplitudes are orders of magnitude smaller,
as also seen in Fig. 2.4e). Note that this is not nearly as easy to read off from
the same spectrum in Fig. 2.4d), where the frequency components are connected
sequentially. Since the series of frequencies practically don’t coincide, it is enough
to only look at the ∆J = 2 couplings again. The same system of equations (2.36)
as for 〈cos2 θ〉 above is obtained. The only difference is the numerical value of the
matrix elements. This allows for reconstruction of the wave packet from 〈cos2 θ2D〉
in the same way as with 〈cos2 θ〉, i. e. by simply ignoring the new frequencies. For
each series of frequencies, a new system of equations can be derived. However,
these systems contains no new information, since the entire wave packet can be
reconstructed from the ∆J = 2 series. This technique has again not been tested
in this thesis, since I have not worked with state-selected molecules. In order
to reconstruct the wave packet with these techniques, the ensemble of molecules
must all experience the same kick pulse strength, i. e. the alignment pulse should
have a uniform (top hat) spatial profile. For e. g. a Gaussian spatial beam profile,
it is difficult to ensure that the detected molecules have all experienced the same
alignment pulse strength.

Reconstructing 〈cos2 θ〉(t) directly from 〈cos2 θ2D〉(t)
The above techniques rely on having an initial state with a well-defined K andM
quantum number. Experimentally, this means the techniques only work for state
selected molecules. It is only possible to reconstruct the wave function for a pure
state. Perhaps a much more interesting result is that it is possible to reconstruct
〈cos2 θ〉(t) directly from 〈cos2 θ2D〉(t) under more general conditions, as will be
demonstrated here. This reconstruction method is insensitive to uncorrelated,
broadband noise, as it involves cutting away most of the frequency spectrum.

The frequencies arising from the ∆J = 2 coupling separate from other fre-
quencies. A simple way to reconstruct 〈cos2 θ〉 from 〈cos2 θ2D〉 therefore suggests
itself. First, all frequencies other than those pertaining to the ∆J = 2 series
are discarded in the Fourier series of 〈cos2 θ2D〉. The sum on the right hand side
of equation (2.35) then contains only one term for a given n 6= 0. The Fourier
coefficient cn for 〈cos2 θ〉 is then reconstructed by dividing away the correspond-
ing matrix element OJ+2

JKM for cos2 θ2D and multiplying back on the same matrix
element for cos2 θ, i. e. multiplying with

U2
JKM = 〈(J + 2)KM | cos2 θ|JKM〉

〈(J + 2)KM | cos2 θ2D|JKM〉
. (2.38)
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FIG. 2.5: Calculated 〈cos2 θ2D〉 traces a),c),e) for I2 at temperatures 0, 1 and 5 K,
respectively. The peak laser intensity is 3.686 TW/cm2 and the pulse duration is
1.3 ps. Panels b),d) and f) show the corresponding 〈cos2 θ〉 traces. Also shown is
the reconstructed 〈cos2 θ〉 trace based only on the 〈cos2 θ2D〉 trace (see text).
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FIG. 2.6: As 2.5e) and 2.5f) except this is for CS2 exposed to a 10 TW/cm2,
300 fs pulse

Reconstructing 〈cos2 θ〉 would then be a simple matter of applying the inverse
Fourier transform. However, the DC term with n = 0 is not as easily recon-
structed, since the different matrix elements in the sum in (2.35) cannot be taken
outside the summation. However, inspection of the numerical values of

U0
JKM = 〈JKM | cos2 θ|JKM〉

〈JKM | cos2 θ2D|JKM〉
(2.39)

indicates that the convergence noted above is extremely rapid, e.g. U0
J00 →

0.785398 . . . as J → ∞. The approximation U0
J00 ≈ 0.785398 is accurate to

within 1 % already at J > 4 and at least as far as to J = 1000. Under this
approximation, the matrix elements can be taken outside the summation and
the full spectrum, and, in turn, 〈cos2 θ〉, can thereby be reconstructed. This
reconstruction method is applied to a calculated 〈cos2 θ2D〉 trace for the ground
state of I2 exposed to a relatively high intensity laser pulse. The result is shown
in Figs. 2.5a)-2.5b). As can be seen, the agreement with the calculated 〈cos2 θ〉
trace is excellent. In contrast to the wave packet reconstruction method described
above, this approximate method generalizes to ensembles of initial states with
different M . Inspection of the numerical value of the conversion factors U2

JKM

reveals that the difference U2
J00 −U2

J0M for a given M quickly become negligible
as J increases. The difference for J > M + 10 first exceeds 10 % when M = 10.
In typical nonadiabatic alignment experiments, much higher J states dominate
the wave packet. The U0

J0M ≈ 0.785398 approximation for the DC term has a
comparable, but slightly worse accuracy for M > 0.

The black curves in Fig. 2.5 show 〈cos2 θ2D〉 and 〈cos2 θ〉 calculated for I2 for
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different temperatures. The red, fully drawn curves are 〈cos2 θ〉 obtained from
the 〈cos2 θ2D〉 data by following the reconstruction method just described. For
0 temperature, only a single state is included, and the reconstruction is nearly
perfect. As the temperature increases, a distribution of states with increasing M
are populated. As a result, small deviations from the true degree of alignment
are observed, particularly for the 5 K case. The most significant error is in the
DC term. With the relatively low B constant of I2, more M states are populated
at a given temperature than for e.g. CS2. The reconstruction therefore works
better at 5 K for CS2, as shown in Fig. 2.6.

As a side note, the effects of nuclear spin statistics on the alignment dynamics
can be seen by comparing Fig. 2.6 with panel e) and f) in Fig. 2.5. CS2 in the
(even) electronic ground state can only occupy even rotational states due to the
spin 0 bosonic sulfur only supporting one even spin combination. I2 can occupy
both even and odd rotational states since iodine has spin 5/2, supporting both
even and odd nuclear spin combinations. The 1/4 and 3/4 revivals are strong for
CS2 and weak for I2. I2 still favors one parity over another, so those revivals are
not entirely washed out. From the even ground state in Fig. 2.5b), the laser only
excites to other even states, and the 1/4 and 3/4 revivals are suddenly strong for
I2. The quarter revivals for odd and even rotational states tend to cancel out [72].

The extension of this method to symmetric tops |K|, |M | > 0 is complicated by
the fact that the ∆J = ±1 selection rule now applies to both the laser interaction
and the observables cos2 θ and cos2 θ2D. Symmetric tops thus exhibit 4 times as
many frequency series, some of which overlap the ∆J = 1, 2 series of frequencies
of cos2 θ. The extra frequencies of cos2 θ2D can therefore not be trivially removed.
However, in many cases, e. g. the one shown in Fig. 2.4, the most significant part of
the wave packet is reasonably well localized spectrally. In those cases, the higher
frequencies introduced by cos2 θ2D could then be expected to localize away from
the low frequencies required for reconstructing cos2 θ.

Application of reconstruction method to experimental data

The result of applying the reconstruction method to experimental data is shown in
Fig. 2.7. Panel a) shows a recorded alignment trace for I2. Note that the trace is
centered roughly around 〈cos2 θ2D〉 = 0.64. Panel b) shows the power spectrum
of that alignment trace. It is seen that the predicted peaks arising from the
∆J = 2 and ∆J = 4 couplings are reproduced experimentally. Peaks from higher
order couplings are washed out by experimental noise. The even amplitudes are
lower than the odd amplitudes by about a factor 2, which is consistent with
a 15:21 mixing due to nuclear spin statistics. This difference is absent in the
∆J = 4 branch, however. The high harmonics involved in that branch are not
sufficiently well resolved. The trace is sampled every 4 ps between the ∆J = 2
revivals, and every 0.5 ps during those revivals. In panel c), the reconstructed
〈cos2 θ〉 trace is shown. Note the slight difference in scaling between panel a)
and c). It is seen that 〈cos2 θ2D〉 is consistently larger than 〈cos2 θ〉. This means
e. g. the degree of alignment is overestimated, and the degree of anti-alignment is
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FIG. 2.7: a) Measured 〈cos2 θ2D〉 trace for I2. A 3.7 TW/cm2, 1.2 ps alignment
pulse is used. b) Power spectrum of the measured alignment trace. c) 〈cos2 θ〉
trace reconstructed from the measured 〈cos2 θ2D〉 trace.
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under-estimated. I recorded the experimental data presented here together with
Benjamin Shepperson. This data is a small part of the data that will be presented
in chapter 5.

2.2.4 Modeling probe selectivity and nonaxial recoil

In Coulomb explosion imaging experiments, an underlying assumption is that
molecular fragments are recoiled along molecular bond axes. This assumption
can be violated by e. g. multiple Coulomb interacting fragments, vibrations and
non-instantaneous bond-breaking. Only diatomic molecules are guaranteed to
recoil perfectly due to conservation of momentum. There has recently been some
progress in deconvoluting nonaxial recoil from experimentally obtained alignment
traces [55]. However, like the Abel inversion, the procedure relies on having bet-
ter statistics than what is typically needed just to obtain an alignment trace.
Consequently, only a few selected points along the alignment trace would typ-
ically be deconvolved. Another effect that can blur alignment traces is that of
probe selectivity. The probe laser may enhance the ionization rate along certain
molecular axes, thus skewing the measured expectation value [73]. The process
of inverting this effect [74] has similar drawbacks.

With the machinery surrounding equations (2.26) and (2.29), the expecta-
tion value of any observable can be calculated efficiently by calculating a small
set of reduced expansion coefficients for the observable. Thus, a quantum me-
chanical description of probe selectivity and nonaxial recoil is now within reach.
Probe selectivity is a weighting Wρ(Ω) of the detection probability depending
on the molecule-probe orientation ρ. Given Wρ(Ω), alignment traces with probe
selectivity taken into account can be calculated by evaluating

〈
Wρ(Ω) cos2 θ2D

〉
.

Given that the molecule points in some direction Ω, nonaxial recoil is char-
acterized by a probability P (Ω′|Ω) that the fragment is actually ejected in an-
other direction Ω′. The effects of this can be taken into account by evaluating〈∫

cos2 θ′2DP (Ω′|Ω)dΩ′
〉
. If P (Ω′|Ω) = P (Ω′ − Ω), i. e. the probability is only a

function of the difference between the two orientations, then this is a spherical
convolution, which can be performed efficiently. Both effects can be taken into ac-
count simultaneously by evaluating

〈
Wρ(Ω)

∫
cos2 θ′2DP (Ω′|Ω)dΩ′

〉
. A derivation

leading to these claims can be found in Appendix A.2.
The problem of determiningWρ(Ω) and P (Ω′|Ω) remains, however. Assuming

a Gaussian dependence, the width of P (Ω′|Ω) can be measured with the tech-
nique in reference 55. A literature study might give a similar idea for Wρ(Ω),
e. g. Wρ(Ω) ∝ cos2 θ′, where θ′ is the angle between the molecular axis and the
probe polarization. These ideas are not explored further in this thesis, as the de-
velopment of the theory is some of the very latest research that I have conducted
during my PhD project.
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2. Theory of laser-induced alignment for isolated molecules

2.2.5 Proposal: Calculating 2D angular distributions
A more rigorous comparison between theory and experiment could also involve
comparing measured 2D angular distributions to those predicted by the theory.
The 3D angular distributions P (θ) were obtained earlier [54], calculated directly
from the expansion coefficients CJKM of the rotational wave function. However,
the method that was used does not trivially apply to the 2D case, since the pro-
jection operation is cumbersome in the framework of angular momentum algebra
and spherical coordinates.

Since expectation values can be calculated efficiently, the 2D distribution
P (θ2D) could instead be obtained from the expectation values of some basis func-
tions. For example the moments〈

e−πinu
〉

=
∫ 1

−1
P (u)e−πinu du, (2.40)

which are simply the Fourier coefficients of the 2D angular distribution. Here,
u = cos θ2D. The 2D angular distribution P (θ2D) can be calculated by in-
verse Fourier transforming the calculated expectation values. As P (u) is real,〈
eπinu

〉
= 〈e−πinu〉, and only e. g. positive moments need to be calculated. Cal-

culating e. g. the first 100 moments would be roughly 100 times slower than
calculating 〈cos2 θ2D〉 alone, but would still be very feasible. If the distribution
is only required at few points in time, the calculation would be about as fast as
calculating 〈cos2 θ2D〉 for the whole time range.

The 3D angular distribution can be calculated in the same way with u = cos θ.
It would be interesting to compare the speed of this calculation with the speed of
the method in the PhD thesis of Christer Bisgaard [54]. At least in the 3D case,
the expectation values of the Legendre polynomials are probably better suited
than those of the Fourier basis, since here the reduced expansion coefficients (2.29)
can be evaluated analytically with the orthogonality properties of the Legendre
polynomials. Thus no numerical integration would be required.

2.3 Summary

To summarize, the theory of 1D alignment of symmetric tops has been reviewed.
An extension to the existing theory has been presented. This extension includes a
way to calculate relevant matrix elements of arbitrary observables in the symmet-
ric top basis efficiently. Specifically, the observable cos2 θ2D has been analyzed. In
order to compare experiments to theory, previous efforts have involved laboriously
inverting 2D measurements to the corresponding 3D version. This work provides
an alternative, namely theoretically predicting the 2D measurements. To further
approach the experimental reality, a way to simulate nonaxial recoil and probe
selectivity has been proposed. In addition, a highly efficient way of inverting
2D measurements of initially cold linear molecules have been introduced. This
method relies only on spectral analysis of the final alignment trace 〈cos2 θ2D〉,
and e. g. does not involve extra analysis or inversion of angular distributions.

34



C
h

a
p

t
e

r

3
Building an efficient and user-friendly

alignment calculator

In this chapter, an efficient and user-friendly alignment calculator for isolated
symmetric tops is described. The calculator builds on the work of Christer Bis-
gaard [54]. Christer created a prototype implementation written in C++, which I
have completely rewritten in Python and C. Having access to an already working
prototype has allowed me to focus on improving the program design. The new
program is significantly more user-friendly and portable, and an effort has been
made to write easy to follow, modular and maintainable code. Furthermore, the
time critical parts have been substantially optimized. With the new program,
it is no longer necessary to edit program code in order to run a new molecule.
Each new molecule can be specified with a few parameters in a simple, easy to
follow configuration file. The propagation no longer depends on any particular
solver implementation. This means that new, faster methods are easy to substi-
tute in. Traces that would take several minutes to calculate with the prototype
code now takes less than a second. The program can now be invoked through a
command-line interface. I have also added a graphical interface. The graphical
interface simply translates the graphical input to the command line invocation.
The program runs on both Linux and Windows PCs. Furthermore, the program
now calculates 〈cos2 θ2D〉 as well as 〈cos2 θ〉. Overall, the new calculator is much
better suited for dissemination purposes, as it is easy to use and results can be
delivered almost instantaneously. Students with little to no programming ex-
perience can quickly perform highly accurate simulations. The calculator has
also proved to be a useful tool in the laboratory for quickly evaluating whether
experimental results can be understood as exemplified in section 3.4
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The basic principle behind of the simulation is straightforward. First, equa-
tions (2.11) are solved numerically during the pulse. After the pulse, the field-free
stationary states are propagated by applying the usual complex phase factors.
Expectation values are obtained by applying the matrix representation of each
observable. Even so, a number of technical details complicate the description.
These details mainly concern efficient utilization of the computer hardware. The
most important of these are described in section 3.1. In order to reproduce ac-
tual alignment experiments, it is important to take into account thermal and
focal volume averaging. These effects are discussed in section 3.2. In section 3.3,
the graphical user interface is described. A brief introduction to the practicali-
ties of using the program is given. This section is mainly aimed at new users of
the program. In section 3.4, three interesting real-world examples of advanced
usage of the calculator program is discussed. The theme here is to reproduce
experimental results as accurately as possible. I have only been involved in the
experimental work in the first example.

The calculator program has been made freely available for anyone to use [75].

3.1 Numerical solution of the time dependent
Schrödinger equation

The matrix elements (2.16) of cos2 θ are calculated with special case 3j sym-
bol formulas from the book of Zare [58] that does not suffer from catastrophic
cancellation,(

J J 2
M −M 0

)
= (−1)j−mA2(2J + 3)2[3M2 − J(J + 1)] (3.1)(

J + 1 J 2
M −M 0

)
= (−1)j−m+1A2(2J + 4)2M

√
6(J +M + 1)(J −M + 1)

(3.2)(
J + 2 J 2
M −M 0

)
= (−1)j−mA2(2J + 5)

√
6(J +M + 2)(J +M + 1)

×
√

(J −M + 2)(J −M + 1) (3.3)
A2(X) = [X(X − 1)(X − 2)(X − 3)(X − 4)]− 1

2 . (3.4)

For performance reasons having to do with CPU cache utilization, the matrix
elements are stored as three arrays, corresponding to the five diagonals in the
symmetric matrix. The matrix elements of higher bands are all zero and are
not stored. The interaction matrix elements for unit intensity I = 1 are then
calculated as per equation 2.13 and stored in the same way. When needed, they
are scaled with the instantaneous envelope intensity I(t). Modern CPUs are much
faster than memory (RAM), so in order not to stall calculations while waiting
for the memory, CPUs implement a small, extremely fast cache memory area1.

1Actually, they implement a hierarchy of increasingly faster but smaller caches.
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3.1. Numerical solution of the time dependent Schrödinger equation

Storing only the nonzero matrix elements, and in the order in which they are
needed ensure locality of reference, such that the cache area is always full of the
numbers that are needed next. For similar reasons, the expectation values are
evaluated immediately after calculating the wave function |Ψ(ti)〉 in each time
step i after the pulse, such that the entire wave function |Ψ(t)〉 is only transferred
to the cache area once. With a memory speed of about 10 GB/s, each reload of
the entire wave function (∼ 10 MB) would increase the overall running time of the
simulation by 10 %2. In case 〈cos2 θ2D〉 must be evaluated, the matrix elements
of cos2 θ2D are calculated with the algorithm from section 2.2. For the common
case of K×M = 0, e. g. a linear molecule, the wave function is a superposition of
states with the same parity. Therefore, rows and columns of the cos2 θ2D matrix
corresponding to the opposite parity are removed. This makes the evaluation of
the expectation value (2.18) about 4 times faster in those cases.

The numerical solution method works with any pulse shape. This will be
demonstrated below in section 3.4. However, for simplicity, the pulse intensity is
assumed to be Gaussian

I(t) = I0 exp(−4 ln(2)((t− t0)/τ)2), (2.3)

where again I0 is the peak intensity and τ is the full width at half maximum
duration. For |t − t0| > 1.5τ , the intensity is set to zero I = V = 0. The
time dependent Schrödinger equation is solved by solving the coupled system
of ordinary differential equations (2.11). Of the explicit ordinary differential
equation solvers available in the Gnu Scientific Library [64], the embedded Runge-
Kutta Prince-Dormand (8, 9) method was found to be most efficient for solving
the system. One state can be propagated in about 10 ms on a normal laptop
computer. These 10 ms include the evaluation of 〈cos2 θ2D〉 and 〈cos2 θ〉 and
the field-free propagation 1.1Trev after the pulse by applying the phase factors
exp(−iHJ

K(t−t0)/~) to each of the expansion coefficients. Evaluation of 〈cos2 θ2D〉
alone takes most of the total time, since it involves the only non-sparse matrix
in the entire simulation. At one point, however, by far the most of the running
time of the entire program was spent inside the complex exponential standard C
library function cexp(), called from the field free propagation code to evaluate
the complex phase factors. The complex exponential function must evaluate the
transcendental sin(x) and cos(x) functions. To avoid these expensive evaluations,
the recursion relation

exp(−iBJ(J + 1)∆t) = exp(−iB(J − 1)J∆t) exp(−2Bi∆t)J (3.5)

is utilized, such that cexp() must only be evaluated twice in each time step
after the pulse, instead of once per basis state per time step. Here, ∆t = t −
t0. This method significantly increases the overall program performance. As an

2This slow reloading approach is unavoidable in matrix languages such as Matlab or Pythons
Numpy, since they can only perform one basic matrix operation at a time, resulting in one reload
per basic matrix operation. This problem is only important for arrays larger than the cache
size (typically a few megabytes).
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alternative, the complex exponentials for a fixed time step could be evaluated once
and for all. Then the wave function could be propagated incrementally with these
constant factors. However, that method turned out to be numerically unstable.
Note that the recursion relation also works for K 6= 0, since the (A−B)K2 term
does not depend on J . The exponential of the term therefore separates. The
recursion breaks down, however, if centrifugal distortion is included.

In its current state, the program typically spends roughly 5 times longer in
the field-free section than it spends inside the pulse propagation section. In the
light of the newly developed theory of the previous chapter, a potentually signif-
icant performance improvement is revealed for this field-free section. Although
the program is now so fast that spending time on further optimizations is hard
to justify, this optimization is worth discussing. The discussion exemplifies how
the new theory opens for more ways of thinking about alignment. By calculating
the Fourier coefficients (2.35), the trace (2.34) can be obtained by use of the
inverse fast Fourier transform (FFT). Doing so would e. g. eliminate the matrix
multiplication with the observable in each time step. A simple comparison be-
tween the running time of the program and that of an inverse FFT of the relevant
size has shown, however, that the current approach is still somewhat faster. The
current methods running time was once dominated by the slow evaluation of the
complex exponentials. The running time was drastically reduced by evaluating
the exponentials with the recursion relation (3.5). The worse performance of the
FFT method is therefore probably due to the relatively large number of complex
exponential, so-called twiddle-factors involved in the well-known Cooley-Tukey
FFT algorithm. However, the Fourier transform is linear, so instead of applying
it to each initial state, it could as well be applied to a weighted sum of the Fourier
coefficients of each initial state or focal volume intensity in an ensemble, as will
be described shortly. In this way, the field-free propagation and calculation of
expectation values for each state in an entire ensemble could be replaced by a
single inverse Fourier transform. As much as a 6-fold performance improvement
(depending on the basis size) could then be gained as a result. This optimiza-
tion would mostly be worth implementing if the alignment of larger molecules
at finite temperatures must be simulated, in the unlikely case that they are not
asymmetric tops. A major downside to the Fourier transform approach is that
extensions to the simulation algorithm, e. g. inclusion of centrifugal distorsion,
could become impossible.

3.2 Thermal and focal volume averaging

The alignment laser pulse, called the pump pulse, also known as the kick pulse,
rotationally excite the molecules and induces alignment. The probe pulse, used
in the Coulomb explosion method, detects the orientation of molecules inside its
focal volume. In the experiments, this focal volume is not much smaller than
the focal volume of the pump. In order to obtain agreement with experiment, it
is crucial, as was pointed out by Bisgaard [54], to average observables over the
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spatial intensity profile of the pump within the focal volume of the probe. In the
experiments, the two laser beams are collinear and have cylindrical symmetry. It
is assumed that the detection probability is proportional to the probe intensity
and that the spatial intensity profiles of both beams are Gaussian. For example,
the pump intensity is given by

I(t, `) = I(t) exp
(
−2`2
ω2
k

)
, (3.6)

where ωk is the spot size of the pump and ` is the distance from the center. Then,
the probability dP of a detection from an infinitesimal cylindrical shell with a
thickness d` is

dP (`) ∝ exp
(
−2`2
ω2
p

)
`d`, (3.7)

where ωp is the spot size of the probe. Calculated alignment traces are averaged
over a number of coaxial, cylindrical iso-intensity shells (cut off at ` = 1.7ωp)
weighted by the detection probability dP (`)/d` of each shell. In the experiments
presented in chapter 5, ωp = 20 µm and ωk = 35 µm. In order to obtain good
agreement with experiments, it is also important to take into account temperature
effects. The thermally averaged alignment trace is calculated as

〈cos2 θ2D〉 =
∑
i

wi
〈
cos2 θ2D

〉
i

(3.8)

where the sum is over the initial states i = |JKM〉 in the ensemble. The weights
wi are calculated according to the Boltzmann distribution, while taking into ac-
count nuclear spin statistics. The matrix elements for the laser interaction (2.13)
and for the observable (2.26) are invariant under exchange of J and J ′, and the
product of two 3j symbols is invariant under two odd, simultaneous permuta-
tions of columns. Therefore, the expectation value 〈O〉i=|JKM〉 is identical to
〈O〉i=|J,−K,−M〉. As a consequence, only about half of the states in an initial
ensemble need to be propagated. The results from the rest are obtained by dou-
bling the relevant weights wi. The thermal and focal volume averaging over initial
states and intensity shells is done in parallel, since the summation involved is com-
pletely incoherent. That is, one initial state can be propagated independently of
the other.

The individual and combined effects of thermal and focal volume averaging
can be seen in Fig. 3.1. The first panel 3.1a) shows 〈cos2 θ2D〉 for I2 starting
in its ground state and subjected to an ultra fast pulse. A rich structure can
be seen. The main revivals from the ∆J = ±2 coupling are accompanied with
several oscillations, or ringings, due to the large superposition of harmonics. In
the middle between the four main revivals, some faster oscillations are seen.
These are the revivals due to the ∆J = ±4 coupling. They do not appear in
a 〈cos2 θ〉 trace. Below, in panel 3.1b), the effects of focal volume averaging
are shown. The different pump intensities inside the probe focal volume lead to
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FIG. 3.1: Alignment traces calculated for I2 subject to a 10 TW/cm2, 300 fs
Gaussian pulse. In panel a), only the ground state is propagated. In panel b),
the ground state is averaged over 30 iso-intensity shells corresponding to a 35 µm
pump and 25 µm probe spot size. In panel c), a 1 K Boltzmann ensemble is
propagated. In panel d), the ensemble is focal volume averaged as in b).
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different frequencies for the most prominent harmonics. This smears out most of
the structure seen in the first panel, as the individual peaks belonging to each
intensity arrive at different times, depending on the intensity shell. Only exactly
at the revivals are the different harmonics guaranteed to be in phase, so the
revivals become much more sharp. The effects of thermal averaging can be seen
in panel 3.1c). Here, a 1 K thermal ensemble is subjected to the same pulse. The
main change is that the 1/4 and 3/4 revivals die out. As discussed above, this
is due to odd and even states being out of phase at the time of these revivals.
Thermal averaging has a similar smearing effect as focal volume averaging, and
further smears out the step function behavior of the permanent alignment level
at each revival. In the final panel 3.1d), the combined effect of both averaging
mechanisms is shown. The revivals are the only remaining structure. After
taking into account both effects, 〈cos2 θ〉 traces are completely flat between the
4 main revivals. This is not the case for 〈cos2 θ2D〉. As can be seen, plenty of
fine structure survives. This structure could easily be mistaken as experimental
noise.

These averaging effects represent a loss of information, e. g. for reasons al-
ready discussed in the preceding chapter. Experimentally, the effects of thermal
averaging can be eliminated by using a state-selected molecular beam [72]. The
effects of focal volume averaging can be minimized by using a probe spot size
significantly smaller than the pump spot size, at a cost of a significantly reduced
detection probability. The focal volume effects can be completely removed by
using a top-hat laser intensity pump beam profile. Focusing lenses for converting
from a Gaussian to a top hat spatial profile are commercially available. To my
knowledge, both effects have never simultaneously been removed in experiments.

3.3 Introduction to the graphical interface

The graphical front end of the calculator program is shown in Fig. 3.2. It is
drawn in a Qt5 designer program, which saves the design in a .ui file. The .ui file
is translated to Python code with the pyuic5 program. The interface logic is then
written in Python. The interface logic validates the user input and passes it on to
the command line version of the calculator, which is also written in Python. The
command line tool distributes the initial states and intensities over the available
CPU cores. The job of calculating the individual alignment traces is then passed
on to a shared library, written in C and briefly described above.

Viewing the graphical interface in normal reading order, the molecules are
specified by their rotational constants and polarizability tensors. A large selection
of predefined molecules can be selected from a drop down menu. The molecules in
the menu are loaded from the “conf/molecules.conf” file when the program starts
up. The linearly polarized, Gaussian laser pulse is specified by its peak intensity
and FWHM duration. The waists of the pump and probe pulses are specified
in order to do focal volume averaging. The number of focal volume intensity
shells is specified in the “#FVA shells” field. Specifying 1 shell disables focal
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FIG. 3.2: Graphical interface of the alignment calculator program.
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volume averaging. Multiple, temporally non-overlapping pulses can be specified
by giving a comma separated list of pulse times. The parameters of each pulse
may likewise be specified as a comma separated list in the above fields. In case
more than one pulse is specified, fields with only one value are interpreted as
comma separated lists with the field value repeated for each pulse. Completely
identical pulses can e. g. be specified by only giving their times in a comma
separated list in the “T0” field. Below the molecule and pulse input fields, the
initial state or states are specified. The user can choose between a Boltzmann
ensemble or starting from a single |JKM〉 state. The even and odd abundances
are discussed below. The ensemble size is calculated from the rotational constants,
the temperature and the given percentile of the Boltzmann distribution to resolve.
If 100 % of the distribution is selected, an infinite number of states would typically
be required. With a lower percentile, fewer states must be propagated. Specifying
the percentile allows a trade-off between accuracy and speed. The default 99.9 %
quite aggressively trades for accuracy. The Even Lavie M anisotropy allows a
skewing of the Boltzmann distribution to favor either low or high M states. This
doesn’t seem to have any influence over the alignment trace, as also noted in
Ref. 54. Note that this anisotropy parameter is defined differently from the one
in Ref. 54. If a single |JKM〉 state is chosen and focal volume averaging is
disabled, the distribution of J states is also indicated to the user. In the lower
right box, the basis size is specified by Jmax, i. e. the largest J quantum number to
include. The calculation time scales quadratically with Jmax. If the basis size is
too small, the calculation fails with an error message. A plotting time step can be
specified. A reasonable time step that captures the ∆J = ±2 coupling frequencies
(and ∆J = ±4 if 〈cos2 θ2D〉 is calculated) is automatically selected if the time
step is unspecified. Performance wise, it is a good idea to increase the time step
if adiabatic pulses are used, because the long pulse defines the relevant time scale
instead of the ∆J couplings. The propagation method defaults to solving the
ordinary differential equations (ODE) in the way described above. However, the
split step matrix method is also available. This method is described in chapter 6.
The matrix method is sometimes faster for propagating through adiabatic pulses.

In the interface, suggestive default values are shown. This allows students to
get an intuition of alignment dynamics without knowing the relevance of all the
parameters. The intuition building is facilitated by the short calculation times.
Typically, traces are delivered well within the attention span of a user.

3.3.1 Calculating abundances from nuclear spin statistics
Perhaps the least intuitive part of the user interface is the even and odd abun-
dance fields. Abundance in this case refers to the naturally occurring abundance
of even and odd rotational states. These have to do with nuclear spin statistics of
inversion symmetric molecules, such as homonuclear diatomics. For molecules
without inversion symmetry, the even and odd abundances are both 1. For
molecules with inversion symmetry, the total wave function must be even un-
der inversion of nuclear bosons and odd under inversion of nuclear fermions. The

43



3. Building an efficient and user-friendly alignment calculator

total parity of the wave function is the product of the parities of the nuclear,
vibrational, electronic and rotational wave functions. Assuming the vibrational
and electronic states are even, the number of even and odd rotational states is
then determined by the number of even and odd nuclear spin combinations. For
a homonuclear diatomic molecule with nuclear spin S, there are (2S + 1)(S + 1)
inversion symmetric spin combinations and (2S + 1)S antisymmetric combina-
tions. For example, the most abundant isotope of iodine, 127I, has spin S = 5/2,
and is thus a fermion. This means that there are 21 even and 15 odd nuclear
spin combinations. The total wave function must be odd, so assuming the 21
even and 15 odd spin states are each equally likely, the even:odd abundance of
rotational states is 15:21. The influence of nuclear spin on molecular spectra is
described in many textbooks, e. g. section 11.5 in Ref. 76.

3.3.2 Remarks on practical usage of the calculator

Although the calculator is fairly intuitive, some important points may not be
obvious. For example, it is easy to accidentally specify a basis size so large that
the calculation takes unreasonably long time. To get an idea of the proper basis
size to use, it is a good idea to calculate a trace only for the single state |000〉
with “#FVA shells” set to 1. For the given pulse, this gives the user a graph
of 〈J〉 as a function of time, along with a graph of the 99.9 % percentile of the
populated J states. A sensible Jmax value is slightly higher than the highest point
on the 99.9 % percentile curve. If a nonzero temperature is needed, the maximum
J values should be adjusted according to the highest populated J state in the
initial ensemble. Afterwards, thermal averaging can be enabled. When the basis
size is big enough to support the thermal ensemble, focal volume averaging and
calculation of 〈cos2 θ2D〉 can be enabled. In order to determine a reasonable
number of focal volume intensity shells, the number should be increased until
an increase no longer changes the calculated trace. Usually 20-30 shells seem
to be enough. The computation time scales linearly with the number of shells.
Generally, when trying to minimize the computation time, it is advisable to not
calculate 〈cos2 θ2D〉, since doing so takes most of the time.

As stated above, when using long pulses, it is a good idea to also specify
a longer time step. The time step is only for readout purposes. Internally,
the wave function is automatically propagated in small enough time steps to
ensure numerical stability. It is the calculation of expectation values that is most
expensive. For long pulses, it is also advisable to start with a very low Jmax, since
adiabatic pulses usually do not populate very high J states. The propagation of
many basis states over a long pulse can easily take much longer than necessary.

3.4 Advanced usage examples

With the modular construction of the calculator program, the usage is not limited
to what can be done from the graphical interface. For example, it is easy to fit
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FIG. 3.3: Alignment trace of I2 subject to a 2.7 TW/cm2, 450 fs pulse. The top
panel is the result of an experiment. The bottom panel is from a simulation, run
at a fitted temperature of T = 0.27 K.

e. g. the temperature of the molecular beam. An example script for this purpose,
fit_temperature.py is included in the calculator folder. The basic principle
is to minimize the summed square error between the calculated and measured
trace by varying e. g. the temperature. The high efficiency of the simulation
implementation facilitates the fitting process. Note that the uncertainty of the
fitted temperature depends on the uncertainty of e. g. the pulse specification. An
example of such a fit is shown in Fig. 3.3. The upper panel shows a recorded
alignment trace for I2. Benjamin Shepperson and I carried out the experiment.
The lower panel shows a simulation under the same conditions, where the trace
is fitted to the one in the upper panel by varying the temperature. A remarkable
agreement between the two traces is obtained. A temperature T = 0.27 K was
obtained as a fitting result. With the Even-Lavie valve used in the experiment to
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cool the molecules, a temperature lower than 1 K is expected [77]. Even so, 0.27 K
seems unrealistically low since the molecules are seeded in helium during the
supersonic expansion, and the helium droplet temperature is 0.37 K, indicating
that the helium from the Even-Lavie valve should have condensed. As will be
discussed in section 5.2.3, a more accurate temperature might have been obtained
if the effects of centrifugal distortion had been taken into account. The sensitivity
of the fitted temperature to changes in pulse parameters have also not been
investigated.

The main difference between the experiment and the simulation is the maxi-
mum degree of alignment obtained for the half revival shortly after 200 ps. The
simulation predicts a higher degree of alignment. The difference may partly be
attributed to probe selectivity. As the molecules aligns with the pump pulse, the
perpendicularly polarized probe beam Coulomb explodes fewer molecules. This
effect was measured by Lars Christiansen and used as a way to characterize the
degree of alignment from the ion yield [19].

A detailed comparison of the degrees of alignment reveals that many tiny
peaks, or higher order revivals, also occur at the same time in the measured trace.
Many seem in anti-phase, however. This could be due to centrifugal distortion,
which is further discussed in section 5.2.3. Many of the fluctuations that are
easily interpreted as experimental noise could turn out to be an actual signal. A
better characterization of the experimental uncertainty of 〈cos2 θ2D〉 is needed.

A great, recent example of advanced usage is from what should have been
a nearly adiabatic alignment experiment of I2 molecules. This example is from
preliminary work towards the publications [B1-B2]. In order to improve the
repetition rate over an old Q-switched YAG laser, uncompressed pulses from a
chirped pulse amplifier are used. While these pulses strictly are shorter than
the rotational period of I2, simulations, e. g. the one shown shown in Fig. 3.4a),
indicate that the pulses still lead to nearly adiabatic alignment. However, when
Benjamin Shepperson and Adam Chatterley did the experiment, it became clear
from the resulting pronounced revivals, shown in the red curve in Fig. 3.4a), that
the experiment is not as adiabatic as the simulations predicted. Benjamin and
Adam then measured the cross correlation of the laser pulses with a 35 fs pulse.
The cross correlation is scaled such that the fluence F = 150 J/cm2 matches the
pulse energy and spot size in the focus. The pulse, shown in Fig. 3.4b), is clearly
not an ideal Gaussian. With a simple modification to the simulation program,
propagation through the measured pulse is possible. The exact same simulation
as in Fig. 3.4a), but using the measured pulse of Fig. 3.4b) is shown in Fig. 3.4c).
As can be seen, the simulated and measured alignment traces are now in much
better agreement. Certainly, no calculation of 〈cos2 θ〉 could have even hoped
for an agreement this good. As in the previous example, the disagreement is
worst at the highest degrees of alignment, likely due to probe selectivity. The
nonadiabaticity most likely stems from the two very steeply sloped rises of the
pulse intensity in the beginning and towards the end of the pulse. After the
experiment, the laser system was adjusted such that it again produces Gaussian
pulses.
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FIG. 3.4: Nearly adiabatic alignment experiment with I2, using a 0.83 TW/cm2,
170 ps pulse. Panel a) shows the measured alignment and a simulation for a
0.5 K initial ensemble using a Gaussian pulse. Panel b) shows the measured
pulse. Panel c) shows the measured trace again, with a simulation for the same
0.5 K initial ensemble but using the pulse shown in panel b).
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FIG. 3.5: Degree of alignment 〈cos2 θ2D〉 of I2 at the peak of a nearly adiabatic
laser pulse as calculated by the simulation program (dashed lines) and as mea-
sured (black dots) in superfluid helium nanodroplets after correction of nonaxial
recoil (see text). Figure data is from [B2].

The remarkable agreement between theory and experiment in the preceding
examples not only demonstrates that the theory developed in chapter 2 is ac-
curate. It also inspires renewed confidence in the quality of the experimental
work. For example, the measurement of the strange pulse in Fig. 3.4b) becomes
much more credible when it leads directly to an understanding of the observed
alignment dynamics.

In a related experiment [B2] using the same pulse duration as in the previous
example, Benjamin and Adam measured the maximum degree of alignment for
I2 molecules inside superfluid helium nanodroplets for various peak intensities
I0. The result, after deconvoluting the nonaxial recoil introduced by the helium
droplet [55] is shown in Fig. 3.5. I wrote a simple script for iterating over inten-
sities and initial temperatures which uses the calculator program to obtain the
peak intensities shown as dashed lines in Fig. 3.5. It was Benjamin who used
the script. As can be seen, the measured data shows that the initial temper-
ature must be somewhere between 0.2 K and 0.5 K, which is consistent with a
droplet temperature of about 0.37 K [14]. Between 〈cos2 θ2D〉 = 0.85 and about
〈cos2 θ2D〉 = 0.92 the experimental data seems to deviate towards the higher tem-
peratures. The experimental results have not been corrected for probe selectivity,
and the simulation does not take probe selectivity into account. If probe selec-
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tivity had been accounted for, this deviation would likely not have been present.
The probe prefers less aligned molecules since the probe and kick pulses are per-
pendicular. At the highest intensities, however, the angular distribution becomes
so narrow that only a small, approximately constant part of the detection prob-
ability distribution is sampled. Thus 〈cos2 θ2D〉 at the highest peak intensities
could be expected to give the best estimates of the initial temperature.

This last experiment constitutes the first measurement of the droplet temper-
ature in Femtolab. It is probably also the first ever measurement of the droplet
temperature that utilizes alignment of molecules.

In the examples, the effect of neglecting probe selectivity seems to have shown
itself. A small, but noticeable discrepancy with the theory appears when the
expected degree of alignment is between about 〈cos2 θ2D〉 = 0.85 and 〈cos2 θ2D〉 =
0.92. Nonaxial recoil has not manifested itself, since I2 is diatomic and because
the effect was removed from the droplet results. For I2, probe selectivity seems
to flatten out the alignment peaks, such that the measured degree of alignment
is lower than the actual degree of alignment. It is still unclear exactly what the
effect of probe selectivity is. A detailed study of these effects is clearly needed.
With the ideas discussed in section 2.2.4 about calculating expectation values
while taking both nonaxial recoil and probe selectivity into account, the goal of
achieving a complete, quantitative understanding of both effects in combination
seems like an encouragingly low-hanging fruit.

3.5 Summary

In summary, a versatile, user-friendly and highly efficient 1D molecular alignment
calculator has been presented. The suggestive graphical interface and the high
calculation efficiency invites the user, e. g. a student learning about alignment,
to investigate the effects of changing relevant parameters. A student may in this
way quickly gain an intuition of alignment dynamics. The effects of thermal
and focal volume averaging have been discussed. Both effects tend to wash out
structure in alignment traces. In this way, some information becomes lost. An
experimental procedure for avoiding this loss of information has been outlined.
A brief introduction to and remarks on practical usage of the calculator has
been given. The audience of that part is mainly new users of the calculator.
Through advanced usage examples, it has been demonstrated that the alignment
theory developed in chapter 2 accurately describes real alignment experiments
on iodine. The ease of use and efficiency of the calculator facilitates quantitative
comparisons between experimental results and theoretical predictions. As has
been demonstrated, this leads to an improved understanding of experimental
results.

49





C
h

a
p

t
e

r

4
Experimental setup

The experiments presented in this thesis were all performed using a very recent
(completed summer 2015) He droplet setup and, unless otherwise noted, in col-
laboration with Benjamin Shepperson. The optical setup is described in section
4.1. The new droplet machine is presented in section 4.2.

Before the new machine was completed, I assisted Lars Christiansen and Ben-
jamin with preliminary alignment experiments on CS2 molecules using an older
He droplet setup in the laboratory. It was through these experiments that I was
introduced to the experimental methods and equipment employed in Femtolab.
Later, but still before the new machine was built, I did experiments on isolated
OCS molecules mostly on my own – again using the old setup. The results of
those experiments will not be emphasized in this thesis, as the results obtained
on the new machine encompass those of the old. They were, however, important,
as they led me to do the simulations presented in chapter 6.

4.1 Optical setup

The optical setup is sketched in Fig. 4.1. The light source is a 35 fs Ti:Sa (800 nm
wavelength) Spectra-Physics Spitfire-ACE-35F regenerative chirped pulse ampli-
fier. The amplifier is seeded by a Spectra-Physics MaiTai SP and pumped by
a Spectra-Physics Empower-45 Q-switched Nd:YLF laser. The seed laser has a
repetition rate of 84 MHz, whereas the amplifier operates at a 1 kHz repetition
rate. The final average power can be as high as 5 W, corresponding to 5 mJ per
pulse, but only one third hereof was used for these experiments. The light source
was shared with another experiment running concurrently in the other end of the
laboratory.
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FIG. 4.1: Schematic diagram of the laser table setup. BS1 and BS2 are beam
splitters, and BS2 is used to combine two beams. The λ

2 label refers to half-wave
plates. These control the polarization of the laser beams. TG is a transmission
grating pulse stretcher for controlling the pulse duration. Var-ND is a variable
neutral density filter for attenuating the beam. TS is a telescope for controlling
the spot size. BD is a beam dump and L is a 30 cm focal length singlet lens
for focusing into the vacuum chamber. The unlabeled bars represent coated,
ultrafast mirrors.

The output of the amplifier is split on a beam splitter BS1. The probe beam
is sent onto a variable delay path (consisting of two delay stages: a Schneeberger
R98001 followed by a finer-step but shorter Newport UTM 100PP.1 stage con-
trolled by a Newport ESP300 universal motion controller) and recombined on a
beam splitter BS2. The pump, or kick beam is sent through a half-wave plate
into a transmission grating pulse stretcher TG. The frequency components are
dispersed spatially and travel different distances before they are recombined by
traveling backwards through the diffraction gratings. In this way, the pulse du-
ration can be controlled. The pulse chirp is adjusted by varying the difference in
path length. From the pulse stretcher, the kick beam goes through a variable neu-
tral density filter Var-ND, such that the intensity can be controlled. The beam
then encounters a telescope TS for controlling the spot size. In combination with
the focusing lens L, this determines the final spot size of the focus in the target
region. After the telescope, the kick and probe beams are recombined on a beam
splitter, BS2. Half the power is dumped in the process. The combined beam
then encounters another half-wave plate and the focusing lens before being sent
into the target chamber. With the two half-wave plates, the linear polarization
of the two beams can be fully controlled. The polarization of a beam is adjusted
with the half-wave plates by minimizing transmission through a perpendicular
polarizer.

Shortly after the vacuum chamber, the now diverging beams enter a Minioptic
Delta single shot autocorrelator (not shown). By only allowing one beam through

1The delay introduced by the Schneeberger is only varied, in steps of 500 ps, when delays
longer than 500 ps are required.
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at a time, the pulse duration in each beam can be measured here. To ensure
spatial overlap of the two beams in the focal region, a metal mirror is inserted
immediately before the vacuum chamber. The light then passes through a dummy
window of the same material and thickness as the one in the vacuum chamber.
This ensures that the overlap outside the chamber is the same as inside. The foci
are then characterized one at a time by scanning a 10 µm pinhole in front of a
fast photodiode across the laser beams. In case the beams don’t overlap, a mirror
in one of the beamlines can be adjusted to move the focus of that beam. The
delay stage is positioned as close to the vacuum machine as possible. Even so,
it is hard to align the delay stage perfectly. The procedure of adjusting overlaps
had to be done every few hundred scanned ps. Benjamin and I often discussed
ways to automate this procedure, since doing so could potentially save a lot
of time. The temporal overlap (informally “t0”) can be found in several ways.
Since there is full control over the polarization in each beam, a method using a
spectrometer was used here. This method, developed by Lauge Christensen and
Anders Vestergaard Jørgensen [78], is significantly faster than e. g. looking for
frequency doubled light generated in a nonlinear crystal. When the two beams
overlap with the same polarization, they are virtually guaranteed to meet with
different phases due to the tiny difference in path length. In this setup, dispersion
is introduced in the pump beam to increase the pulse duration. Interference
fringes in the frequency spectrum can then be seen when the pump and probe
overlap in time. Ignoring third and higher order dispersion, the fringes become
symmetric around the central frequency when the two pulses overlap perfectly.
With a spectrometer positioned after the vacuum chamber, the temporal overlap
is determined to within the uncertainty in stage position, or about 70 fs.

In order to compare experimental results to theoretical predictions, it is im-
portant to know the intensity of each pulse. If the pulses are assumed to have
a Gaussian intensity profile (see equation (2.3) and (3.6)), the peak intensity I0
can be calculated from the pulse energy Epulse, the duration τ (FWHM) and the
spot size ω with the formula [53]

I0 = 4
√

ln 2
π3/2

Epulse

ω2 · τ . (4.1)

The pulse energy is simply the average beam power divided by the repetition
rate. The experimental intensities reported in this thesis are all calculated with
equation (4.1).

4.2 Droplet machine

The new machine, pictured in Fig. 4.2, consists of four separate vacuum chambers.
These are the droplet source chamber, the doping chamber, the target chamber
and the supersonic source chamber. The machine was designed and assembled by
Benjamin Shepperson during my PhD project. In the construction phase, I have
assisted Benjamin in the assembly and with the electronics. My most significant
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FIG. 4.2: Schematic of the droplet machine. The copper nozzle is attached to the
cryostat in the droplet source chamber (left). After passing through a skimmer
(red), helium droplets from the nozzle pick up molecules in the pickup cells (green)
in the doping chamber (middle). Only the leftmost pickup cell is used in this
PhD project. The droplet beam passes through another skimmer and two liquid
nitrogen cold traps (blue) before entering the target chamber (top right) through
a hole in the µ-metal shield (yellow). The supersonic source chamber below the
target chamber houses the Even-Lavie valve (brass colored) for generating cold
molecular beams. On top of the target chamber is the MCP detector (green)
and a CCD camera (outside). The laser beams pass through another small hole
in the µ-metal shield and overlap both the droplet and molecular beams in the
center between the two lowest VMI capacitor plates (surrounded by the µ-metal).
Each chamber is evacuated by its own turbomolecular pump. The schematic was
designed by Benjamin Shepperson and prepared for display by Benjamin and
Mette Rasmussen.



4.2. Droplet machine

FIG. 4.3: Inside view of the droplet source chamber while the machine is oper-
ating. The outer copper shield is cooled to roughly 50 K. The nozzle inside is
cooled to 14.00 K. The separation between the tips of the nozzle and the skimmer
is roughly 2 cm.

contribution in the construction of the machine was to improve the temperature
stability of the droplet nozzle by introducing two stainless steel plates between the
cold head and the nozzle. These plates act as thermal insulators, and dampen
out the powerful cooling cycle of the cryostat. In this way, the temperature
stability improved from ±0.5 K to ±3 mK at 10 K at a cost of a slightly larger
minimum nozzle temperature. I also advised Benjamin to open up the back-end
of the pickup cells to reduce the number of molecular trajectories leading to a
contaminating effusive background signal. One design goal was to minimize this
effusive beam as much as possible.

The 0.6 mm thick 2-mm-diameter platinum iridium nozzle with a 5 µm aper-
ture, shown in Fig. 4.3, resides inside the droplet source chamber. The noz-
zle is cooled to cryogenic temperatures with a closed cycle cryostat (Sumitomo
Heavy Industies (SHI) Cryogenics RDK-415D 4K pumped with a SHI F-50H
compressor). The temperature is regulated by heating up two resistors (Farnell
MHP35470F 47 Ω 1 % 35 W) attached to the nozzle with a Lakeshore Cryogenics
335 temperature controller. The temperature is measured with a sillicon diode
(LakeShore DT-670B-CU). Helium droplets are produced by continuously ex-
panding high-purity (6.0) helium gas at a stagnation pressure of 25 bar through

55



4. Experimental setup

the nozzle. With a nozzle temperature of 14 K, this leads to production of droplets
consisting of on average 7× 103 helium atoms [15]. These conditions are used in
all of the droplet experiments presented in this thesis. The droplet size distri-
bution follows a log-normal distribution, and thus becomes very broad for larger
droplets [79]. After expansion into the vacuum, the droplets form and very quickly
(∼ 10−4−10−3 s) cool down to 0.37 K through evaporation of helium atoms. This
was predicted [51] by using the liquid drop model [80, 81] that is also used in nu-
clear physics to e. g. calculate “evaporation” (i. e. nuclear decay) rates of neutrons
in excited nuclei. The predictions are in good agreement with experiment [52].
In chapter 3, the droplet temperature in this machine is confirmed to be around
0.4 K. This was measured by comparing 〈cos2 θ2D〉 of I2 molecules in a (nearly)
adiabatic experiment with 〈cos2 θ2D〉 predicted by the theory in chapter 2. Each
evaporated atom carries away at least the binding energy, which is about 7 K ·kb,
or 5 cm−1. The speed of the droplet beam is about 300-400 m/s [82].

After expansion through the nozzle, the helium droplets pass through a 1-mm-
diameter skimmer to collimate the droplet beam. The droplets then enter the
doping chamber (see Fig. 4.2). Here, they pass through a 7.4 cm long cylindrical,
coaxial pickup cell with an inner diameter of 1.4 cm. The cell is filled with a low
pressure gas of the molecule of interest. The droplets pick up molecules from this
gas since the Landau velocity is much smaller than the relative velocities of the
droplets and the thermal molecules. The probability that a droplet picks up k
molecules follows a Poisson distribution [15]

Pk = (αL)k
k! exp(−αL). (4.2)

Here L is the length of the pickup cell and α = ρσ, where ρ is the number
density of the gas and σ is the droplet cross-section. The pickup cell pressure,
and thereby the molecular number density, is controlled with an adjustable leak
valve (Kurt Lesker VZLVM940R). The pressure is adjusted such that the droplets
primarily pick up none or a single molecule. Dimers can be detected e. g. in the
mass spectrum. For I2, a particularly simple way of detecting dimers is to look
at the I+ ion images taken with the probe pulse only, polarized in the plane of
the detector. Dimers lead to a perpendicular (oval shaped) channel, which is
absent for the monomers. In the I2 experiments, the pressure is lowered until
this perpendicular channel vanishes. This gives a detection rate of on average
only one event per 20 laser shots, i. e. about 50 events per second.

After the pickup cell, the droplet beam travels through a 4-mm-diameter
cylindrical hole in a stainless steel barrel filled with liquid nitrogen. The nitrogen
is isolated from the vacuum by the stainless steel walls. This barrel acts as
a cold trap, stopping unwanted unsolvated molecules from entering the target
chamber. A second pickup cell after the cold trap allows for sequential doping.
This cell is empty in the experiments presented in this thesis. At the end of
the pickup chamber is another, 2-mm-diameter skimmer, followed by a second,
smaller liquid nitrogen barrel with 4-mm-diameter cylindrical hole. This barrel is
inside the target chamber. In the center of the target chamber, the droplet beam
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is crossed by the two focused laser beams described above. The intersection of
the beams is in the center of a velocity map imaging (VMI) spectrometer [83],
which will be discussed below.

Below the target chamber is the supersonic source chamber. Here, a pulsed
Even-Lavie valve (EL-7-4-2011-HRR, 600 Hz) produces a beam of cold (<1 K)
isolated molecules [77]. The valve is operated at 100 Hz. Depending on the
molecule, the sample is either placed inside the valve or in the supply line leading
up to the valve and isolated from the metallic walls with fiber glass filter paper.
Helium carrier gas at a stagnation pressure of 80 bar drives the sample vapors
towards the valve opening, where the gas undergoes supersonic expansion into
the vacuum. To control the pulses molecular density, the valve can be heated to
increase the vapor pressure of the sample. The molecular beam passes a 3-mm-
diameter skimmer before it enters the target chamber. In the I2 experiments, the
molecular density usually gave detection rates of about 50 events per repetition,
or about 5000 events per second.

All of the chambers can be isolated with pneumatic gate valves (VAT). This
allows control (blocking) of the droplet beam, such that e. g. the effusive beam
from the pickup cell can be characterized. Likewise, the background conditions
can be measured by isolating the target chamber. The isolation valves also allow
the chambers to be vented independently.

Each chamber is pumped with its own turbomolecular pump. All of these
turbos have magnetic bearings. The need for potentially contaminating bearing
grease is thus eliminated. The turbos for the target and doping chambers are both
backed by the same dry pump (Busch Vacuum BA 100 “Cobra”). The turbos
for the droplet- and supersonic source chambers are both backed by an Edwards
IGX 600L dry pump. The two backing pumps each evacuate their own manifold,
to which the turbo exhaust lines are connected. The turbo pumping capacities
(quoted for nitrogen) are 2200 L/s for the droplet source chamber, 450 L/s for
the pickup chamber, 1100 L/s for the target and supersonic chambers. The turbo
pumps on the target and supersonic chambers are capable of 1600 L/s, but are
mounted on reduced flanges (CF 160).

The pressures inside the chambers are monitored with Vacom Atmion ATS40C
full range ionization pressure gauges. Under droplet beam experiments with the
cold traps filled, the pressures in droplet source, pickup and target chambers are
roughly 3× 10−4 mbar, 2× 10−6 mbar and 1× 10−8 mbar, respectively. Under
the gas phase experiments with the cold trap in the target filled, the pressure in
the supersonic source and target chambers are 1× 10−5 mbar and 6× 10−8 mbar,
respectively.

4.3 Detection system

The laser system supplies a 1 kHz main electronic trigger signal. This trigger
signal is relayed with a finely controlled delay by a Stanford Research delay
generator DG535. The delay generator distributes the individually delayed trigger
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signals to the Even-Lavie valve, an oscilloscope, a CCD camera and a fast, high
voltage switch.

The molecular beam pulses from the Even-Lavie valve are synchronized to
the laser pulses by varying the valve delay introduced by the delay generator.
The delay is typically a few hundred microseconds, and is chosen such that the
detected signal is maximized.

The molecular or droplet beams intersect the laser beams in the middle be-
tween the repeller and extractor plate electrodes of a velocity map imaging (VMI)
spectrometer [83]. Experiments on isolated molecules and molecules in helium
nanodroplets can thus be done under exactly the same conditions. The 1 mm
thick plates are 3.5 cm apart. The droplet beam enters between the repeller and
extractor plates from the side, and the molecular beam enters the VMI through
a 3-mm-diameter hole in the center of the repeller plate. A voltage gradient of
about 0.6 kV/cm accelerates charged particles through a 20 mm hole in the center
of the extractor plate, and through a 20 mm hole in the grounded plate 20 mm af-
ter the extractor plate. The particles travel about 47 cm while diverge according
to their initial velocities. The flight path is shielded from stray magnetic fields by
a cylindrical sheet of µ-metal. After the flight, the particles impinge on a 2D po-
sition sensitive microchannel plate (MCP) detector (El-Mul Technologies B050V,
chevron MCP with a 38 mm active diameter). The charged particles break loose
electrons in the detector metal. These electrons are amplified across the detector
by a 1800 V difference between the front and back of the detector. A phosphor
screen behind the MCP lights up when it is hit by the amplified electron cascade.
The phosphor screen is at a 2300 V higher potential than the back of the MCP. A
CCD camera (Allied Vision Prosilica GE680) records the positions of light spots
on the phosphor screen. After choosing the correct ratio of extractor to repeller
voltages (“focusing the ion lens”), a given position on the detector corresponds to
the projection of the particle velocity vector onto the plane of the detector [83].
The correct ratio is determined by focusing ionic species with low initial velocity
(compared to the velocities obtained after Coulomb explosion) onto a single pixel.
In the experiments presented in this thesis, H2O+, created from the background
gas was used in the focusing procedure. In all of the gas phase experiments pre-
sented in this thesis, the repeller and extractor voltages are 3800 V and 6000 V,
respectively. In the droplet experiments, the ejected ions move slower, and thus
require a larger magnification. In those experiments, the repeller and extractor
voltages are 3170 V and 5000 V, respectively. The voltage ratios, and thereby the
focusing remain the same.

The camera is not fast enough to resolve arrival times of the many charged
species created by the laser pulse. In order to only image a single species, the
detector is gated by temporarily lowering the voltage on the front of the detector
when the particle of interest arrives. At other times, a voltage difference of
only 1300 V is maintained. When the voltage isn’t lowered, the detector doesn’t
amplify the electrons generated by other species. The voltage is lowered by 500 V
for a few hundred ns with the fast, high voltage switch. The switch timing is
controlled by varying the delay introduced by the delay generator. The switch
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is fast enough to discriminate single ions. In the experiments presented in this
thesis, the switch opens the gate for a duration of 160 ns.

In order to determine the arrival time of the individual charged species, the
VMI spectrometer can be turned into a time-of-flight (ToF) spectrometer by
grounding the phosphor screen and the front of the MCP, while leaving the back
side at 1800 V. The back-end of the MCP is connected to an oscilloscope (Lecroy
Wavesurfer 64MXs-B 600 MHz, 10 GS/s) through a high-pass filter. The filter
serves to protect the oscilloscope from the 1800 V (DC) supply voltage. The am-
plified electrons cause a brief voltage drop which is measured by the oscilloscope.
The time-of-flight of a charged particle is determined by its mass m and charge
q and other external factors such as the plate voltages and the flight distance. If
the particle starts with zero velocity, the arrival time t ∝

√
m/q. If the particles

have nonzero initial velocity, the ToF signal is broadened. With all the external
factors held constant, the mass-to-charge ratio r = m/q of each detected species
can be determined after calibrating the spectrometer. Calibration can be done
e. g. with the (H2O)+ and H+ channels from the background gas in the isolated
target chamber. A complete characterization of the detected species and the
fragmentation channels of the molecules can typically be obtained from the mass
to charge ratios. Impurities such as hydrocarbons, water, nitrogen and oxygen
can likewise be identified. Of these, (H2O)+ is most often the strongest channel.
The contribution from impurities is minimized by “baking” the chambers, i. e. by
heating the chambers up over a few days before the experiment. The heat leads
to higher desorption rates from the chamber walls, allowing the impurities to be
pumped away more rapidly.

The repetition rate of an experiment is limited by the combination of electronic
devices involved in the experiment. The Even-Lavie valve operates at up to
600 Hz, but due to limited pumping capacity, it is operated at at most 200 Hz.
In the experiments presented in this thesis, the valve is only operated at 100 Hz.
At 100 Hz and with the signal intensities recorded, the speed of the delay stage
becomes the limiting factor.

The molecular density in the droplet beam is so small that much fewer events
are detected per laser shot. In these experiments, the camera shutter is open
for the duration of 10 laser shots, giving an effective repetition rate of the full
1 kHz of the laser system. With the longer opening time, it becomes necessary
to eliminate ambient room light. This is done by wrapping a black piece of cloth
around the camera and the rods connecting the camera to the target chamber.
The long shutter opening time causes a few of the pixels to always light up. In
the droplet experiments, only two pixels were faulty, and are not included in the
analysis. In the ToF measurements, only the oscilloscope limits the repetition
rate. Depending on the oscilloscope and the mode of operation, the full 1 kHz
rate can be obtained.

The camera images and oscilloscope measurements are sent over a 1 gigabit/s
ethernet connection to a computer. Here, the images are compressed online with
a hit-finding routine. Only the coordinates of each lit pixel is stored. Offline
analysis of the compressed images can be done any time after the acquisition.
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5
Alignment of molecules inside superfluid

helium nanodroplets

A qualitative and quantitative understanding of 1D laser-induced alignment of
isolated symmetric top molecules was attained in chapters 2 and 3. The apparatus
for experimental investigation of molecular alignment was described in chapter
4. With the same setup, the nature of rotation and alignment of molecules inside
superfluid helium nanodroplets can be examined. The stage has thus been set
for the central topic of this PhD thesis.

Below, in section 5.1, a brief account of the previous results of nonadiabatic
alignment of molecules inside helium nanodroplets is given. In section 5.2, new
experimental results on alignment of I2 molecules inside helium nanodroplets
are presented. The results show qualitatively new, never observed before align-
ment dynamics. Together with the theory presented in chapter 6, these results
lead to an improved Understanding of Laser-Induced Alignment and Rotation of
Molecules Embedded in Helium Nanodroplets.

The results presented here forms the basis of a manuscript in preparation [A2].

5.1 Historical perspective

The results from rotationally-resolved IR spectroscopy mentioned in chapter 1
show that the free rotation of molecules in helium nanodroplets is unimpeded
by the presence of the liquid. Only a small increase of the moment of inertia is
introduced by a nonsuperfluid solvation shell adiabatically following the molec-
ular rotation. The rotationally-resolved IR spectra of molecules in droplets are
reproducible with the theory for isolated molecules where the moment of inertia
is adjusted accordingly.
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5. Alignment of molecules inside superfluid helium nanodroplets

FIG. 5.1: The measured degree of alignment 〈cos2 θ2D〉 of isolated CH3I molecules
(black squares) and of CH3I molecules in He droplets (red squares) under identical
conditions as a function of time after the alignment laser pulse. The alignment
pulse parameters are I0 = 12 TW/cm2 and τ = 450 fs. The inset shows the same
data in a narrower time window. Excerpt from Ref. 17

When the rotation is induced by an ultrashort, intense, nonresonant laser
pulse, the results are strikingly different. Here, the molecules are no longer free
to rotate, and the theory for isolated molecules, presented in chapter 2, no longer
reproduces the observed rotational dynamics. This is demonstrated in Fig. 5.1.
Methyl iodide (CH3I) molecules are aligned both in the gas phase and in helium
nanodroplets. The isolated molecules align at regularly spaced intervals in a way
that is fully consistent with the theoretical description given in chapter 2. This
description is clearly not adequate for understanding alignment of molecules in-
side droplets. The molecules align on a significantly slower time scale that is
not consistent with a small increase in the moment of inertia. After the initial
alignment, the revival structure is completely absent, and a permanent align-
ment level 〈cos2 θ2D〉 = 0.5 is reached after about 100 ps, indicating that the
molecules become randomly aligned. From Fig. 2.3 on page 25, it is seen that
any 〈J00| cos2 θ2D|J00〉 matrix element with J > 0 is larger than the one for
J = 0. Thus the permanent alignment level must be strictly larger than 0.5 if
any excited state is present, even if the coherence becomes lost or changed. See
the discussion on page 24 about the permanent alignment level and the diagonal
matrix elements following the Fourier series (2.35). Loss of coherence manifests
itself in a loss of revivals, since it is the coherence that ensures the periodicity
of each off-diagonal contribution and the resulting beat pattern. The above ar-
gumentation is also valid for the KM states that are populated at the droplet
temperature (although here the equal population of the initial M states due to
equipartition must be invoked – the matrix elements average to 0.5). The only
other way a decay of the permanent alignment level is conceivable is if M (or
K) is no longer a conserved quantum number, i. e. the helium somehow (e. g. via
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FIG. 5.2: Alignment traces for a variety of molecules inside helium droplets. DIB
refers to 1,4-diiodobenzene, and IB refers to iodobenzene. Excerpt from Ref. 18

collisions) mixesM states on this extremely short time scale. It seems more than
likely that the lifetime of the rotational states in the methyl iodide experiment is
simply much shorter than the few nanoseconds determined from the linewidths
in the rotationally resolved experiments on e. g. OCS (see Fig. 1.4 on page 7).

The same can be said for other molecules that have also been investigated in
Femtolab. The same qualitative behavior is seen e. g. for the molecules shown in
Fig. 5.2. Of the results shown here, I have only contributed to the experimental
work for CS2. The CS2 result stands out, as it is the only molecule that exhibits
any fast rotational dynamics. However, this rotation is “too fast”, i. e. it almost
matches the case of the isolated molecule perfectly, at least when only the first
few ps are considered. This is also in disagreement with the expectation that
the moment of inertia is modified by a factor of roughly 3 [15]. Is this a sign
of cavitation, i. e. does the rotating CS2 molecule punch a hole in the liquid,
continuing in free rotation until the cavity collapses?

5.2 Alignment of I2 molecules

Previously, I2 molecules were aligned inside helium droplets (see Fig. 5.2), but
showed similar behavior to that of other molecules. The results for CS2 molecules
motivated the development of the model presented in chapter 6, which in turn
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5. Alignment of molecules inside superfluid helium nanodroplets

motivated the new study on I2 molecules presented here. The results of the
modeling indicate that I2 should show new behavior if the kick strength [59] is
lowered compared to the kick strengths used previously. Here, new experimental
results are presented for alignment of I2 molecules in helium nanodroplets.

5.2.1 Isolated I2

In order to show that the experiment works reliably, the experiment is first per-
formed on isolated molecules under the same conditions that will be used in the
droplet experiments. This also enables a direct comparison between the align-
ment dynamics of free molecules and molecules in helium nanodroplets.

The Even-Lavie manual advises against putting iodine in the valve as I2 is
corrosive. To avoid corrosion damage of the expensive valve, the sample was
initially placed in the stainless steel helium supply line (Swagelok). From here,
the vapors never reached the valve, however. To increase the vapor pressure, the
iodine sample in filter paper inside the stainless steel pipe was heated with a heat
gun. This very quickly caused severe corrosion damage to the supply line. To do
the experiment, iodine had to be put inside the Even-Lavie valve sample holder.
By keeping the valve parts and the iodine sample dry at all times and well isolated
with glass filter paper, corrosion damage was avoided. The sample was inside the
valve only long enough to record the experimental data. The valve was run at
30 ◦C, close to the lowest stable temperature of the valve. Corrosion inside the
stainless steel sample holder for the droplet doping chamber also occurred after
less than a week, when the sample was left under vacuum at room temperature.

The molecular axis distribution as a function of time is determined by Coulomb
exploding the molecules with a 35 fs, 430 TW/cm2 probe laser pulse at a con-
trolled delay after the kick pulse. The probe spot size1 is ωp = 20 µm and the
kick spot size is ωk = 35 µm. The 2D velocity distribution of the resulting I+
ions are recorded with the VMI, described in section 4.3. The molecular axis
distribution is approximated with the emission direction of the I+ ionic fragment
from the Coulomb explosion. For the isolated, diatomic I2 molecules, the recoil
can only happen along the bond axis. However, probe selectivity (see section
2.2.4) can still skew the axis distribution slightly. In the droplets, nonaxial recoil
does occur for I2 due to collisions with the helium atoms.

Examples of I+ ion images for isolated molecules are shown in Fig. 5.3. From
the recorded images, the degree of alignment 〈cos2 θ2D〉 in panel f) is calculated as
the average over cos2 θ2D for the individual ion hits (see section 2.2). A randomly
aligned sample has 〈cos2 θ2D〉 = 1/2, a perfectly aligned sample has 〈cos2 θ2D〉 =
1, and a perfectly anti-aligned sample has 〈cos2 θ2D〉 = 0.

The degree of alignment is calculated only with the ion detections that fall
between the white circles at radii 100 and 180 pixels, shown in panel b)-e). This
radial range captures most of the I+ ions born with an I+ partner. This is clear
from covariance analysis, which shows that when one I+ ion is detected in the

1See equations (2.3) (3.6), (3.7) and (4.1).
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FIG. 5.3: Examples of I+ ion images a)-e) used to determine the degree of align-
ment 〈cos2 θ2D〉 in f) as a function of the delay between the kick and probe laser
pulses. The kick pulse was blocked while recording image a). Images b)-e) are
recorded after a 450 fs kick pulse with a peak intensity of 8.0 TW/cm2. Each
image is 451 × 451 pixels, corresponding to 36 × 36 mm2 on the detector. The
images are scaled individually to their maximum value to get all images on the
same scale. The arrows indicate the timing and 〈cos2 θ2D〉 of each image. The
double-pointed arrow indicates the polarization of the kick pulse. The probe pulse
is polarized perpendicularly to the image plane. The number of detected ions in
panel b) and c) is too low to clearly show the distribution, so for display, these
images have been smoothed with a Gaussian filter with a standard deviation of
1 pixel. The ion detections in the center have been artificially removed, since the
strong signal here would break the color scale.



5. Alignment of molecules inside superfluid helium nanodroplets

range, another I+ is simultaneously detected in exactly the opposite direction (to
within 2 pixels) at roughly the same distance from the center. I++ ions rejected
by the gate. The spectrometer has not been calibrated. However, since I+ was
measured to have a flight time of 6.24 µs, and the camera records 12.4 pixels /
mm of the detector, a simple calculation allows for estimation of the recoil speed.
Assuming that I2 breaks into two I+ ions and that all the electrostatic energy

U = 1
4πε0

e2

d
(5.1)

is converted to kinetic energy at the instant of the probe pulse, it is found that the
I+ ions from a molecule aligned with the plane of the detector must arrive at 156
pixels from the center. Here, the I2 bond distance d = 2.666Å is inserted, and e
is the elementary charge. A more detailed integration2 gives the same radius to
within the uncertainty. This radius is indicated by the thin, white dashed circle
in the probe only image in panel a). The fact that the calculated radius coincides
with the observed sharp cut-off in the signal intensity is another strong indication
that the selected radial range captures I+ ions that are born with an I+ partner.
According to the same calculation I+ ions created with an I++ partner should
hit at a radius of 221 pixels, which is just within the limits of the shown images.
Thus the I+-I++ channel is seen to be negligible.

Two inner channels can be seen e. g. in panel d). As can be seen from the
images in b) and c), these channels takes time to build up, and they apparently
start out at higher radii. This fact and the characteristic shape [18] is consistent
with the interpretation that these channels are caused by dissociation into I-
I+ and uncharged I-I pairs, that gain charge by the Coulomb explosion pulse
(and thus have constant velocity after sufficient time for separation before the
probe pulse). Such dissociation channels do not represent rigid rotation, and the
inner radii are therefore excluded from the analysis. For reasons that are not
yet understood, however, the dissociation channel exhibits alignment at the same
time as the Coulomb explosion channel, as seen in Fig. 5.3d), and what looks
like anti-alignment (or possibly an octopolar shape) in panel e). The dissociation
is due to a low dissociation threshold of I2 (12 441 cm−1) [84]. Although the
absorption cross section is low at 800 nm [85] the kick pulse still dissociates a
small fraction of the molecules and leads to the time-dependent structure in the
radial distributions.

In the images a)-e), the central portion has been cut out, as a highly localized
signal arising from the doubly charged I++

2 molecular ion gives a disproportion-
ately large, few-pixel signal intensities. These molecular ions, that have a lifetime
longer than the flight time [86], have the same mass to charge ratio as I+. Thus
they are also detected while the detector gate is opened. They localize in the
center because they are born without any significant velocity, however.

2The reader may be interested in the classical Coulomb explosion simulation program that I
wrote. The program calculates 3D trajectories of charged, rigidly rotating molecular fragments
and is designed for investigating deviations from axial recoil. The program can be found at
https://github.com/andersas/nbody-coulomb.
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Since the inner radial ranges have been cut out, the directions of molecules
pointing in the direction of the detector are not recorded. This gives a small, and
apparently negligible bias in favor of higher degrees of alignment.

5.2.2 I2 molecules in helium nanodroplets
Examples of ion images from the same experiment performed on I2 molecules in
helium droplets are shown in Fig. 5.4. The only difference is the plate voltages.
These must be lower, as the I+ fragments are slowed by the droplet. Nevertheless,
the ratio of the plate voltages have been kept the same. Furthermore, as this
is just an example, the images are shown for a different kick pulse. However,
each pulse configuration for the isolated molecules is also used in the droplet
experiment and vice versa.

The I+ fragments can pick up a small amounts of He atoms on the way
out of the droplet [87]. In these experiments, the gate was set to select IHe+

complexes, as this allows for completely background-free detection. There are no
other species present with the same mass-to-charge ratio.

The degree of alignment is again calculated for the ions falling between the
white circles, now at radii 55 and 180 pixels (see Fig. 5.4 panel b)-e)). There
is a slight left-right asymmetry inside the inner circle due to a small, damaged
area on the detector where the detection efficiency is reduced. Given that a
time-of-flight of 6.87 µs was measured for IHe+, and neglecting the influence of
the droplet on the velocity, IHe+ is expected to hit within a radius of 172 pixels.
This radius is again indicated by the white, dashed circle in panel a). Clearly, the
droplet slows down the ions. Under the liquid drop model [51], the droplet radius
is R = r0N

1/3, where r0 = 2.22Å is an effective atomic radius of helium and
N = 7× 103 is the number of helium atoms in the droplet. With these numbers
and assuming that the ions in the worst case only travel at the Landau velocity,
the escape time te < 0.1 ns is significantly lower than the time-of-flight and thus
has no influence on the result. I.e the time-of-flight used in the calculation is
essentially the same regardless of the influence of the droplet. The droplet peak
seems to die out at a pixel radius of around 115 (indicated by a blue dashed circle
in Fig. 5.4a)). This corresponds to an initial (2D) speed of 1.3 km/s, which is
well above the Landau speed.

Although the measurement is background-free, there is again at least one
dissociation channel present (see Fig. 5.4). The channel builds up over the first
few ps. As in the gas phase, this channel is eliminated from the analysis. It is
noted, however, that the channel exhibits apparent, roughly constant alignment
as far as to the limit of 1.5 ns where no further measurements were performed.
This apparent alignment most likely does not indicate stably populated rotational
states, but is rather due to dissociation effects.

The recorded alignment trace in 5.4 f) exhibits the slow dynamics previously
seen for e. g. I2 or CH3I molecules (see Fig. 5.1 and 5.2). In contrast to the previ-
ous results for I2, the trace here also exhibits fast dynamics initially, resembling
somewhat that of CS2 in Fig. 5.2.
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FIG. 5.4: Examples of IHe+ images a)-e) for determining the degree of alignment
f) of I2 molecules inside helium droplets, as for the isolated molecules in Fig. 5.3.
Image a) is again recorded without the kick pulse, and images b)-e) are recorded
after a 1.3 ps, 3.7 TW/cm2 kick pulse. The ion images are averaged over the
indicated time intervals (colored) and scaled to their individual maxima. The
corresponding time intervals are colored accordingly on the trace f). For display,
all images are smoothed with a Gaussian filter with a standard deviation of 0.7
pixels.

5.2.3 Results

Ion images like those presented in Figs. 5.3 and 5.4 are recorded for a variety of
pulse configuration and pump-probe delays. The resulting 〈cos2 θ2D〉 traces are
displayed in Figs. 5.5-5.6. Panels with the same names in the two figures show
results obtained under the same laser conditions. The right columns of panels
expand on the initial times to highlight the structure that starts to appear in
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panel e). Each row is annotated with the kick pulse fluence

F =
∫ ∞
−∞

I(t)dt Gaussian= τI0

√
π

4 ln 2 (5.2)

used in the experiment. In panels a)-e), the kick pulse duration (FWHM) is
τ = 450 fs and in panels f)-i) the pulse duration is increased to τ = 1.3 ps in
order to decrease the peak intensity. This is to avoid multiphoton (or tunnel-
ing) ionization caused by the kick pulse. It may appear problematic that both
pulse parameters are varied in a seemingly unsystematic way. However, in the
δ-kick [59–61] limit τ → 0, the kick pulse fluence alone determines the induced
rotational wave packet [56], i. e. the two pulse parameters I0 and τ merge into
one.

Each data point in the gas phase traces is an average over 400 images, each
containing roughly 50-60 ion hits. Of these, a total of roughly 15 000 hits are
within the radial ranges for each delay on average. For the droplets, 10 000 images
are recorded for each delay with on average one ion hit every two images. Of these,
3-4000 typically hit inside the radial ranges and contribute to the calculation of
〈cos2 θ2D〉 at each data point. Due to the long acquisition time for the droplet
experiments, parts of the 〈cos2 θ2D〉 traces for the droplet experiments (panels
f1)-h1) in Fig. 5.6) have not been recorded.

In Fig. 5.5 the results for the isolated molecules are shown. The experimen-
tal curves (black) are plotted on top of results from a simulation (red), where
the simulation has been fitted by varying the temperature. It should be noted
that the traces are nonuniformly sampled, e. g. the sample rate is higher during
the revivals than between them. Between the revivals, the recorded trace looks
more noisy where the sample rate is higher. It is unclear to what degree the
fluctuations represent the noise level and how much the fluctuations represent
actual fine structure due to the many small but nonzero bands in the cos2 θ2D
matrix representation. See sections 2.2.2 and 3.2 where higher order revivals are
discussed. These are found to be small and fast, resembling noise, and, crucially,
they survive both thermal and focal volume averaging as seen in Fig. 3.1d) on
page 40.

The fitted curves generally match the experimental curves well. However, as
the kick pulse fluence is increased, small discrepancies in the oscillations at the
revivals begin to show. The discrepancies are most pronounced in panels h1)
and i1). The discrepancy is most likely due to centrifugal distortion, which has a
tendency to distort the revivals asymmetrically [88, 89]. Asymmetric broadening
of the revivals is reproduced qualitatively in preliminary simulations taking into
account centrifugal distortion using a modified version of the program presented
in chapter 3. Another contributing cause to the discrepancies could be that the
detection probability is not linearly dependent on the probe pulse intensity, as is
assumed in the focal volume averaging of the simulation.

The effects of neglecting centrifugal distortion seems to be reflected in the
fitted temperatures in Table 5.1, that overall seem to decrease as the kick pulse
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FIG. 5.5: The time-dependent degree of alignment represented by 〈cos2 θ2D〉 of
isolated I2 molecules at 9 different fluences of the kick pulse. The rightmost
panels is a zoom of the first 40 ps.
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FIG. 5.6: The time-dependent degree of alignment represented by 〈cos2 θ2D〉 of I2
molecules in He droplets at 9 different fluences of the kick pulse. The rightmost
panels is a zoom of the first 100 ps.
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FIG. 5.7: Comparison of the measured early alignment dynamics for isolated I2
and I2 in the droplets at the highest kick pulse fluence F = 8.9 J/cm2. The laser
parameters are identical for the two traces.

fluence is increased. The difference might also (partly) be explained by the change
in the pulse duration between panels a)-d) and e)-i), since the sensitivity of the
fitted temperatures to variations in the pulse parameters have not been inves-
tigated. More precisely, the uncertainty in the pulse characterization may give
rise to a systematic uncertainty in the difference between the kick pulse fluences
measured at the two different kick pulse durations.

Panel a b c d e f g h i
Temperature [mK] 790 383 273 625 546 130 102 100 97

Table 5.1: Temperatures fitted to the alignment traces in Fig. 5.5.

The true temperature of the supersonic beam is most likely best approximated
by the result T = 0.79 K obtained for the least intense pulse, since the molecules
here experience the least centrifugal distortion. Such a rotational temperature
is consistent with previous determinations, for instance iodobenzene 1.05 K [90]
and aniline 0.4 K [77] for the molecular beam from an Even-Lavie valve.

Overall, the gas phase results presented in Fig. 5.5 appear as expected and
seem well understood.

The results for the droplet experiments are shown in Fig. 5.6. For the low
kick pulse fluences in panel a)-d) a prompt alignment peak appears within the
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FIG. 5.8: Direct comparison of the alignment traces in Fig. 5.6 a)-c).

first 100 ps. As the kick pulse fluence is increased, the peak becomes more nar-
row and tall, and occurs earlier. This is consistent with the earlier results on
alignment of e. g. CH3I in helium droplets [17], and is similar to the alignment
dynamics in the gas phase (compare e. g. to Fig. 5.5 a2)-d2)). It is noted that the
prompt alignment dynamics here appear about 2 − 3 times slower than for the
isolated molecules, which is a considerably lower than the factor 10-170 reported
for CH3I [17]. A factor 2 − 3 is in much better agreement with the expectation
from rotationally-resolved spectra [15].

As the kick pulse fluence is increased, a new substructure appears in the
prompt alignment peak (panels e2-i2) at very early times (< 10 ps). The feature
becomes more prominent as the kick pulse fluence is increased, while the slower
structure diminishes. This fast structure is very similar to the one observed for
CS2 in Fig. 5.2. A direct comparison of the isolated molecules and those in
droplets is seen in Fig. 5.7. Before about 1 ps, the two traces closely follow each
other. At 1 ps an abrupt change in this gas-phase-like structure occurs for the
droplet trace. The trace flattens out and decays towards the secondary peak,
which then decays completely within about 100 ps.

The droplet data presented here exhibits new features never observed before.
After the prompt alignment peak, pronounced ringings or oscillations can be seen
(see Fig. 5.6 a)-e)). These ringings resemble those that usually occur after the
prompt alignment peak in alignment traces for isolated molecules, for example
in Fig. 5.5 c2-i2). Another new feature is the appearance of a distinct oscillatory
structure around 550–750 ps in Fig. 5.6 a-c). The droplet traces in those panels
are shown in the same window in Fig. 5.8. The oscillatory structure appears at
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5. Alignment of molecules inside superfluid helium nanodroplets

essentially the same time for the three lowest kick pulse fluences. For the lowest
kick pulse fluence, the oscillation dips below 〈cos2 θ2D〉 = 0.5 just before 600 ps.
As the kick pulse fluence increases, the structure becomes slightly more narrow
with slightly higher degrees of alignment at the central peak. This is similar to
the behavior of rotational revivals for isolated molecules. This structure is the
most clear indication of coherent rotation out to at least 700 ps for the lowest
three kick pulse fluences.

Another new feature never seen before is that the “permanent” alignment
level, or local average, increases with increasing kick pulse fluence for the lowest
three kick pulse fluences in the full time range 100–1500 ps. This is similar to
the alignment behavior for isolated molecules. However, the local average is
clearly seen to slowly decrease over the whole time range for all three traces in
Fig. 5.8. As mentioned below Fig. 5.1 on page 62, any excited state3 contributes
positively to a permanent alignment level above 〈cos2 θ2D〉 = 0.5. Furthermore,
the oscillations in the F = 1.3 J/cm2 trace (red) are initially fast, but gradually
become slower. In the gas phase, the fastest time structure is given by the beat
frequency between the two highest populated J states (for 〈cos2 θ〉 – for 〈cos2 θ2D〉
higher frequencies are expected, but only at much lower amplitudes, see section
2.2.2). These two experimental observations suggest that the J states populated
by the kick pulse gradually decays. As the kick pulse fluence in increased (Fig. 5.6
d1)-i1)), the permanent alignment level no longer increases, but quickly vanishes,
indicating an even faster decay of J states. The fast initial feature before 5 ps
shows up at the same kick pulse fluence where the permanent alignment level has
decayed completely. One interpretation of this is that the rotation crosses the
excitation threshold at that kick pulse fluence, creating a roton. Does the roton
backflow [40, 42] hit the molecule on a time scale of 1-2 ps?

The gas phase traces in Fig. 5.5 were only recorded out to 500 ps, and the
droplet traces in Fig. 5.6 were recorded to 1.5 ns. In order to have at least
one complete comparison, the gas phase experiment at a kick pulse fluence of
0.51 J/cm2, i. e. panel b) in Fig. 5.5, was selected to be extended up to 1.5 ns.
The result is shown in Fig. 5.9. As can be seen, an interesting result turned up,
and it was decided that the experiment should be extended up to the longest delay
possible at 3.2 ns. Both the permanent alignment level and the amplitude of the
revivals decay all by themselves for isolated I2 molecules, and the alignment trace
is not periodic as expected from the theory in chapter 2 (see equations (2.32),
(2.34) and (2.35) on page 23). Since a decay of the permanent alignment level can
only come from a decay of population from high to low J states, three questions
arise from the result in Fig. 5.9: 1) What mechanism causes isolated I2 molecules
to loose angular momentum? 2) How severe is the decay? and 3) How much of
the decay in the droplet results Fig. 5.6a)-c) is caused by this self-decay and how
much is caused by the helium environment? Aperiodicity was already seen in the
gas phase result Fig. 5.5 at high kick pulse fluences due to centrifugal distortion.

3Or deviation from equipartition by overrepresentation of low M in case M > 0 before the
kick.
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FIG. 5.9: Measured degree of alignment for isolated I2 molecules exposed to the
same F = 0.51 J/cm2 pulse as in Figs. 5.5b) and 5.6b). The time is extended to
3.2 ns. The 1/4 + n and 3/4 + n revivals have been colored red and light blue,
respectively.
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FIG. 5.10: Simulated rotational state distribution after the kick pulse used in
Fig. 5.9 of an isolated I2 molecule initially residing entirely in the ground state
|000〉.
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FIG. 5.11: Direct comparison of the measured degree of alignment represented
by 〈cos2 θ2D〉 for isolated I2 molecules and I2 in helium droplets. The two traces
are recorded under the same conditions, with the same kick pulse fluence F =
0.51 J/cm2.

However, centrifugal distortion can not explain the observed decay of alignment,
since the centrifugal distortion does not mix J levels (to first order, it is just an
additional term in the rotational energy).

To answer question 2, then, see Figs. 5.10 and 2.3 (page 25). Figure 5.10 shows
the rotational state distribution after the kick pulse used in Fig. 5.9. Clearly, the
induced wave packet is not at all very broad, and a decay of just one ~ would be
enough to significantly alter the permanent alignment level (compare Fig. 2.3).

As for question 1), since 127I has nuclear spin 5/2 ≥ 1, the nuclei have nonzero
quadrupole moments[58]. These can interact with the electron distribution of a
rotating, linear molecule as long as J ≥ 1. The selection rule for this interaction
is ∆J = 0,±1,±2. With the relatively large 127I nucleus and the large number of
electrons in I2, it seems likely that this quadrupole interaction is strong enough
to explain the needed decay. Rotational angular momentum could be transferred
to nuclear spin.

Note that with the ∆J = ±1 selection rule, the rotational wave function
changes parity. Thus the quater revivals should changed from pointing upwards
to pointing downwards (see the note on page 31). The 1/4 +n revivals (red) and
3/4 + n revivals (light blue) indeed seems to be oscillating, roughly in counter-
phase, for the duration of the experiment (see Fig. 5.9).

As for the third question, it is not clear to what degree this effect influences the
decay in the droplets for the low kick pulse fluences. However, from Fig. 5.11 the
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decay time does seem very comparable. The permanent alignment level reaches
roughly 〈cos2 θ2D〉 = 0.5 in the same amount of time t ≈ 1500 ps for the two traces.
Furthermore, the permanent alignment levels seem very similarly sloped in the
interval 750–1500 ps. It seems reasonable to suspect that without this effect, the
decay would have at least taken longer. Perhaps the revival-like structure around
650 ps in the droplet data would then have been stronger without the self-decay.
It would be interesting to try the experiment again with another heavy molecule
where the nuclear spin is less than 1. Another approach towards stronger revivals
is to find an even heavier molecule that supports a broader rotational wave packet
before interacting with the helium, since the nuclear spin interaction would then
take longer to drive the molecular rotation towards the low J states that exhibit
decaying permanent alignment levels (see Fig. 2.3 on page 25).

5.3 Summary

In brief, an introduction to previous results on aligning molecules inside helium
droplets have been given. The historical results are inconsistent with those of
rotationally-resolved spectra since the alignment results clearly show that the
rotation is hindered by the helium environment.

A new experiment where I2 molecules are impulsively aligned both inside
helium droplets and in isolation was described. In the experiment, the alignment,
characterized by 〈cos2 θ2D〉, is measured by recording the emission direction of I+
(from isolated molecules) and IHe+ (from molecules in droplets) ionic fragments
from Coulomb exploding the molecules.

The result of this experiment shows several new, never observed before fea-
tures of alignment of molecules inside helium droplets. Most importantly, for
low kick fluences, clear signs of free, coherent rotation out to at least 600 ps are
seen. Many of the features indicating coherent rotation vaguely resemble those for
rotation of isolated molecules. In particular, a revival-like structure between 550–
750 ps is seen, positioned independently on the kick pulse fluence. This structure
becomes slightly more defined with increasing kick pulse fluence, up to a point
where the coherence becomes lost and very fast initial dynamics emerge.

Lastly, apparent deviation from free, coherent rotation is seen even for isolated
I2 molecules. This deviation is tentatively ascribed to quadrupole interactions
between the atomic nuclei and the electrons. For the low kick pulse strengths,
it is unclear exactly to what degree the breakdown of free, coherent rotation can
be explained by the helium environment and how much can be ascribed to the
quadrupole interaction. It seems that neither effects are negligible. New impulsive
alignment experiments on other heavy molecules are required to elucidate the
conditions under which helium nanodroplets permit free rotation and thereby
strong field-free alignment of molecules.
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6
Rationalization of observed alignment

behavior through simplified models

The new droplet results presented in the previous chapter seem as if they are
closer to being describable with the alignment theory for isolated molecules than
all the previous results. For example, the new results exhibit for the first time
ever what appears to be a rotational revival in the droplet phase. The surprising
decay of alignment in the corresponding gas phase experiment seems to suggest
that the rotation is even more free than what could otherwise be interpreted from
the droplet results alone.

Why is I2 more free to rotate than all the previously studied molecules? In this
chapter, two simplified models are presented to give at least qualitative answers
to this question. The first is a quantum mechanical model of a linear rotor
with just a single helium atom attached. Although this may sound almost too
simplified, the model turns out to have surprisingly high predictive power. The
theoretical model is described in section 6.1 and was developed by Robert Zillich
based on existing theory for atom-spherical top van der Waals complexes [91]. I
implemented the model in a simulation program, which is described in section
6.2. In section 6.3, predictions of this model is described and compared to the
experiments. The results of the quantum model inspired my supervisor Henrik
Stapelfeldt to develop a classical model, described in section 6.4, which in many
ways is in good agreement with the quantum mechanical model, and which further
relates the experimental results to classical properties of superfluid helium.

The quantum mechanical model and simulation program presented here was
also presented in my progress report in the middle of my PhD study. The work on
and description of the quantum mechanical model forms the basis of a publication
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6. Rationalization of observed alignment behavior

in preparation [A3], and the classical model is incorporated in another manuscript
in preparation [A2].

6.1 Quantum model

The interaction between a molecule and a neutral, closed shell (helium) atom
is the van der Waals force between either a permanent or induced dipole of the
molecule and the induced dipole of the helium atom. The van der Waals force is
also what binds the atoms in a helium droplet together.

The theory of atom-spherical top van der Waals complexes was developed by
Hutson and Thornley [91] in 1993. Robert Zillich specialized the theory to the
case of a linear molecule, and incorporated the interaction between the molecule
and an alignment laser field. The specialization to linear molecules is in order to
ensure computational feasibility of the model.

6.1.1 Coordinate system
In order to calculate the alignment of a molecule-atom complex induced by a
linearly polarized laser pulse, the two-body Schrödinger equation for the molecule
degrees of freedom (rotation) and the atom (translation) must be solved. The
molecule-atom system is described by the coordinates r0 for the molecule center
of mass position, the direction Ω of the molecule axis, and by the position of
the atom r1 (see Fig. 6.1). Because of translational invariance, only the relative
translational motion, described by r = r1 − r0 is needed. The vector r is from
the molecule center mass to the atom. As in chapter 2, the polarization direction
Êlaser of the laser field is taken to be along the Z axis. Consequently, θ is again

Atom

r

r0

r1

Êlaser

X

Y

Z

θ

θr

Ω

Linear molecule

FIG. 6.1: Space-fixed molecule-atom coordinate system.
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both the angle between the laser polarization and the molecule and the polar
angle of the molecular axis in the lab frame. The length of r is denoted r and the
angle between the molecular axis (pointing in the Ω direction) and r is denoted
θr.

In these coordinates, the Hamiltonian takes the form

H = Hfree + V (θ, t)− ~2

2µ∇
2
r +W (r, θr), (6.1)

where, as in (2.1), Hfree = j2
2I is the rotational Hamiltonian of the isolated

molecule. Note the slight notational difference j being the angular momentum
of the molecule about its center of mass, J being reserved as the total angular
momentum. The moment of inertia of the molecule reduces to a single value
I. Note the resemblance to (2.5). The rotation around the molecular axis has
been left out and instead two terms have been added. These are −~2/2µ∇2

r,
which is the kinetic energy of the relative motion of the molecule and atom, and
W (r, θr), which is the potential energy for the molecule-atom interaction. The
atom-molecule reduced mass µ = matmmol/(mat + mmol) is calculated from the
mass of the atom mat and the mass of the molecule mmol. Finally, V is the
molecule-laser potential (2.4) as used previously. The laser field is modeled ex-
actly as in the previous chapters 2 and 3. Similarly, thermal and focal volume
averaging is implemented as in chapter 3.

Since the strong E-field changes the polarization of both the atom and the
molecule, the molecule-atom interaction potentialW (r, θr) is transiently increased
during the pulse. For separations between the atom and the molecule larger than
or equal to the value in the ground state (r ∼ 4Å) the effect is, however, negligible
and not included here.

6.2 Implementation

To solve the Schrödinger equation with the Hamiltonian (6.1), it is convenient
to express the Hamiltonian in terms of the angular momentum L of the orbital
motion of the entire system about its center of mass

H = Bj2

~2 + L2

2µr2 −
~2

2µr
∂2

∂r2 + V (θ, t) +W (r, θr). (6.2)

The rotational constant B = ~2/2I is as used previously. This form allows
expansion of the wave function Ψ in the coupled eigenbasis of j2, L2, J2 and Jz,
where J = j + L is the total angular momentum and Jz is its projection on the
laser polarization axis,

ΨN (r,Ω) =
∑
j,L,J

cjLJN (r) 〈r,Ω|jLJN〉 . (6.3)

Here j,m and L,M are the quantum numbers associated with j2 and L2, respec-
tively, J is the total angular momentum quantum number and N = m+ n is the
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6. Rationalization of observed alignment behavior

α‖ [Å
3] α⊥ [Å3] ∆α [Å3] B [GHz] mass [amu]

CS2 15.6[92] 5.3[92] 10.3 3.271[93] 76.14
HCCH 4.675† 2.889† 1.786 35.27[93] 26.04
I2 14.562[94] 8.4627[94] 6.0993 1.12[93] 253.81
He 4.003
† From Ref. 93, calculated with a density functional in the B3LYP/aug-cc-pVTZ basis.

Table 6.1: Model parameters for species used in the simulations.

quantum of its projection on the laser polarization axis. The coupled basis is

〈r,Ω|jLJN〉 =
∑
mM

〈jmLM |JN〉Yjm(Ω)YLM (Ωr), (6.4)

where Ωr is the direction of the vector r and the Clebsch-Gordan coefficient
〈jmLM |JN〉 couples the spherical harmonic angular momenta eigenstates |jm〉
and |LM〉 for the individual angular momenta in the sum.

This choice of basis ensures conservation of N at all times and conservation
of energy and J2 before and after the pulse. These conservation laws are not
guaranteed to be obeyed if for example the uncoupled basis |jm〉|JM〉 is used
because of numerical round-off errors. The conservation is guaranteed only as
long as the expansion coefficients stay normalized, however.

The expansion onto the |jLJN〉 basis discretizes all angular dependence. The
radial direction is discretized in 27 − 1 = 127 equidistant steps separated with a
distance ∆r = 0.16Å for CS2 and ∆r = 0.14Å for HCCH and I2. The number
of radial steps is chosen as a power of 2 minus 1 for maximum performance of
the fast discrete sine transform discussed below. The molecular data used in the
simulations are listed in table 6.1.

Inserting the expansion (6.3) in the Schrödinger equation and projecting onto
the |j′L′J ′N ′〉 state yields the coupled channel equations for the radial wave
function ujLJN (r) = rcjLJN (r)

i~u̇jLJN (r) =
(
Bj(j + 1) + ~2L(L+ 1)

2µr2 − ~2

2µ
∂2

∂r2

)
ujLJN (r)

+
∑
j′J′

V j
′LJ′N

jLJN (t)uj′LJ′N (r) +
∑
j′L′

W j′L′JN
jLJN (r)uj′L′JN (r). (6.5)

Here, the 1
r
∂2

∂r2 r operator has been converted to ∂2

∂r2 , which is diagonal in Fourier
space, by working with the radial wave function u instead of the expansion coef-
ficients c. The coupled channel equation (6.5) have been derived e. g. in Ref. 91
for general molecules, but only in the field-free case. It was Robert Zillich who
derived this generalization.
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The interaction matrix elements are
V j
′L′J′N ′

jLJN (t) = 〈j′L′J ′N ′|V (θ, t)|jLJN〉. (6.6)

W j′L′J′N ′

jLJN (r) = 〈j′L′J ′N ′|W (r, θr)|jLJN〉 (6.7)
In (6.5), some primed quantum numbers have been omitted because the potential
matrices are diagonal in those numbers.

6.2.1 Matrix elements
To solve the coupled channel equations, expressions for the matrix elements (6.6)
and (6.7) must be obtained. Doing so is a rather technical and uneventful exercise
in angular momentum algebra. The following result that I derived simplifies
the work involved when dealing with already known molecular operators and
observables, i. e. operators that are independent of the atom degrees of freedom
(equivalently the quantum numbers r, L and M), like those already given and
derived in chapter 2. Assume

Aj
′m′

jm = 〈j′m′|A|jm〉 (6.8)
is a known matrix representation of a molecular operator A, for example A =
cos2 θ or A = cos2 θ2D. Then in the coupled basis

Aj
′J′N ′

jLJN = 〈j′L′J ′N ′|A|jLJN〉
=

∑
MM ′mm′

〈j′L′J ′N ′|j′m′L′M ′〉 〈L′M ′|〈j′m′|A|jm〉|LM〉 〈jmLM |jLJN〉

=
∑

MM ′mm′

Aj
′m′

jm 〈j′L′J ′N ′|j′m′L′M ′〉 〈jmLM |jLJN〉 δLL′δMM ′

= δLL′
∑
mm′

Aj
′m′

jm 〈j′m′L′(N ′ −m′)|J ′N ′〉 〈jmL(N −m)|JN〉 δN−m,N ′−m′ .

(6.9)

It is seen that Aj
′J′N ′

jLJN is only changed by the appearance of two Clebsch-Gordan
coefficients, and is only non-zero if L = L′, N −m = N ′−m′ ⇔ ∆N = ∆m, and
if the following selection rules are obeyed:

|j′ − L| ≤ J ≤ j′ + L (6.10)
|j − L| ≤ J ≤ j + L. (6.11)

With this result, the cos2 θ operator (2.16) is re-expressed in the coupled basis

〈j′L′J ′N ′| cos2 θ|jLJN〉 = δN,N ′δL,L′
√

(2J + 1)(2J ′ + 1)

×
∑
m

[
(−1)m 2

3
√

(2j + 1)(2j′ + 1)
(
j j′ 2
0 0 0

)(
j j′ 2
m −m 0

)
+ 1

3δj,j
′

]
×

(
j L J
m N −m −N

)(
j′ L J ′

m N −m −N

)
. (6.12)
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The relation between the Clebsch-Gordan coefficients and the Wigner 3j symbols

〈j1m1j2m2|j3m3〉 = (−1)j1−j2+m3
√

2j3 + 1
(

j1 j2 j3
m1 m2 −m3

)
(6.13)

have also been used to obtain (6.12). The cos2 θ operator doubles as both the
observable and an ingredient in the interaction matrix (6.6) as

V j
′L′J′N ′

jLJN (t) = −E0(t)2

4
(
∆α〈j′L′J ′N ′| cos2 θ|jLJN〉+ α⊥

)
. (6.14)

The cos2 θ2D observable is not implemented as the simulation is already close to
being computationally infeasible.

The molecule-atom potential energy surface W (r, θr) is taken as program in-
put. The potential energy surface is taken from Ref. 95 for CS2-He, from Ref. 96
for HCCH-He and from Ref. 97 for I2-He. For a linear molecule the cylindrical
symmetry allows the potential to be expanded in Legendre polynomials

W (r, θr) =
∑
λ

Pλ(cos θr)Wλ(r). (6.15)

The program input consists of the expansion coefficientsWλ(r) for λ = 0, . . . , λmax,
where λmax = 16 for CS2 and HCCH and λmax = 24 for I2. In the case of CS2,
HCCH and I2, odd λ coefficients are zero because of the inversion symmetry.
With the spherical harmonics addition theorem [58]

Pλ(cos θr) = 4π
2λ+ 1

∑
ν

Y ∗λν(Ωr)Yλν(Ω), (6.16)

the expansion (6.15) is expressed in terms of angular momenta states |λν〉

W (r, θr) =
∑
λν

4π
2λ+ 1Y

∗
λν(Ωr)Yλν(Ω)Wλ(r) (6.17)

which are then further coupled with the coupled basis states to give the matrix el-
ements (6.7). The angular momentum algebra involved was performed by Robert
Zillich, and is not reproduced here. The result is

W j′L′

jLJN (r) =
∑
Mm

∑
m′,λν,M ′

(2J + 1)(−1)m+M ′

(
j

m

L

M

J

−N

)[
j

−m
λ

ν

j′

m′

] [
L

−M
λ

−ν
L′

M ′

](
j′

m′
L′

M ′
J

−N

)
4πWλ(r)
2λ+ 1 , (6.18)

with the abbreviation[
a

u

b

v

c

w

]
≡
( (2a+ 1)(2b+ 1)(2c+ 1)

4π

)1/2
(
a

u

b

v

c

w

)(
a

0
b

0
c

0

)
. (6.19)
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6.2. Implementation

Numerically, the sum over four 3-j symbols is much more efficiently calculated as
a Wigner 6-j symbol.

In the simulation, the Gnu Scientific Library (GSL) [64] is used to calculate 3-j
and 6-j symbols. GSL uses numerically unstable textbook formulas for both 3-j
and 6-j symbols. For the 3-j symbols, this is not a problem because only the cos2 θ
operator is needed, and the formulas are stable for the low quantum numbers
encounted here. However, I had to modify the GSL source code for calculating the
6-j symbols to handle the large quantum numbers involved. I extended the stable
region by modifying the used formula to work with the logarithm of factorials
instead of with the factorials directly, as suggested by Robert Zillich. This was
done before I became aware of stable, fast recursion relations [66, 68]. It is noted
that Jonathan G. Underwood is in the process of implementing the recursion
relations of Ref. 68 in the GSL.

6.2.2 Propagation
The coupled channel equations (6.5) is a set of coupled, linear partial differen-
tial equations describing the time evolution of the wave function. In contrast,
the coupled channel equations for the isolated molecule (2.11) are ordinary dif-
ferential equations. The numerical solution of ordinary differential equations is
straightforward, since standard numerical algorithms like those of the celebrated
Runge-Kutta family are widely available in numerical libraries.

The addition of another differential ∂2/∂r2 in (6.5) from the kinetic energy
term turns the ordinary differential equations into partial differential equations.
They are still linear, though, which means e. g. the time evolution after the pulse
could be solved by expanding the wave function in the energy eigenstates, at least
if these states could be found in a reasonable amount of time. With a δ kick pulse,
the wave function immediately after the pulse could be found in the uncoupled
representation |jm〉|LM〉 with the theory for the isolated molecule, since the pulse
would not influence the atom state, which furthermore is frozen for the duration
of the pulse. It is less clear how a finite pulse should be implemented.

This approach is not taken, as the model is anticipated to be extended to
include more than one helium atom. In fact, following my work on the simu-
lation, the model has already been extended by Robert Zillich, but only in two
dimensions, since the time complexity scales badly with the number of coordi-
nates. By including more than one helium atom, the equations become nonlinear,
and the eigenstate expansion would not work. The nonlinearity comes from the
interaction between the helium atoms. The complexity of this problem is similar
to the complexity arising in treating more than one electron in atomic physics
calculations.

In this simulation, the time evolution is generated directly with the time
evolution operator [62]. The wave function at any time t can be be found from
the initial wave function at time t0

ΨN (t) = U (t, t0)ΨN (t0), (6.20)
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6. Rationalization of observed alignment behavior

where U (t, t0) = exp(−iH(t− t0)/~) is the time evolution operator, in this case
for a time-independent Hamiltonian. Calculating U (t, t0) for arbitrary t is not
feasible. Therefore, the propagation is done in small time steps dt, on the or-
der 5–10 fs, where also the Hamiltonian (6.2) is approximately time-independent.
Experience has shown that the high intensity pulses populate j, J states up to
around jmax = Jmax = 200, in turn coupling L up to around Lmax = 30 during
the first few ps. With a radial grid consisting of Nr = 127 points, the size of
the full Hamiltonian matrix would be hundreds of petabytes. This size require-
ment can be avoided by working with the terms in the Hamiltonian individually,
since they couple the channels jLJNr relatively sparsely. The matrix exponen-
tial generally does not satisfy the usual relation exp(A + B) = exp(A) exp(B)
except when A and B commute. However, by applying the second order Trotter
approximation [98]

e(A+B)dt = eAdt/2eBdteAdt/2 +O(dt3). (6.21)

twice, a more manageable expression for the time evolution operator becomes

U (dt) = exp (−iHdt/~) ≈ exp(−idtT/2~) exp(−idtW ′/2~)
× exp(−idtV/~) exp(−idtW ′/2~) exp(−idtT/2~). (6.22)

Here T = − ~2

2µ
∂2

∂r2 andW ′ = Bj(j+1)+ ~2L(L+1)
2µr2 +W . V andW are the operators

corresponding to the last two expressions in the coupled channel equations (6.5)
for the field of the laser pulse and the molecule-atom interaction, respectively.

The T operator is diagonal in Fourier (k) space, since

∂2

∂r2 û(k)eikr = −k2û(k)eikr. (6.23)

The action of exp(−idtT/2~) on the Fourier transformed radial wave function
û(k) is simply exp(−idtT/2~)û(k) = exp(−(~k)2/4µ)û(k), and the action in po-
sition space is obtained by an inverse Fourier transform. Since u(0) = ra(r) =
0 = u(∞), only a discrete sine transform of u is needed. With an implied 0 at
the first grid point, the discrete sine transform is most efficient if the grid size is
a power of 2 minus 1.

Even after accounting for the selection rules in (6.18), storing the couplings
in the exp(−idtW ′/2~) matrix would require 60 gigabytes of memory for each
N. This seems surprising given that the expansion of W in Legendre polynomials
in the molecular coordinates only requires a few kilobytes. But the situation is
complicated by the exponential and the couplings in (6.18). This size can be
halved because after 63 radial steps, W is neglecible, and only the diagonal ele-
ments of W ′ remain. Furthermore, inspection of the (unitless) matrix elements
of exp(−idtW ′/2~) show that 90% of them have a magnitude below 10−10, prob-
ably because of the small time step, giving a value close to the identity matrix,
which is diagonal. These small elements are discarded, and a list of the remain-
ing, non-negligible matrix elements is kept. The size is further reduced by storing
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6.2. Implementation

the matrix elements in IEEE 754 single precision format after calculating them
in double precision. These approximations reduces the 60 gigabyte matrix to
only 2-3 gigabytes, allowing the equations to be solved on a standard desktop
computer. Two versions of the matrix is stored, since the time step during the
pulse is shorter than after the pulse. A comparison with a simulation using the
full 60 gigabyte W ′ matrix shows that the change in normalization of the state
vector due to these approximations is less than on part in 10 000 even after 1 ns
simulated time. Simulations using the large matrix were carried out on large
virtual machines in the Amazon cloud1.

The last factor exp(−idtV (t)/~) in the middle of (6.22) due to the laser in-
teraction presents the most serious challenge, since it is time-dependent. A recal-
culation of the matrix exponential would seem to be required in each time step.
Several methods for calculating the matrix exponential exists [99]. Since in quan-
tum mechanics, most matrices are Hermitian and thereby diagonalizable, a simple
and relatively efficient way is to diagonalize the matrix A = MHdiag(λi)M . Then

exp(A) = exp(MHdiag(λi)M) = MH exp(diag(λi))M = MHdiag(exp(λi))M.
(6.24)

Since the laser interaction potential

V (θ, t) = −E0(t)2

4︸ ︷︷ ︸
Time dependence

(∆α cos2 θ + α⊥)︸ ︷︷ ︸
Angular dependence

(2.4)

is factored into a scalar time dependence and a constant matrix angular depen-
dence, essentially only one matrix-matrix product is required2 in each time step.
However, in this basis, the matrix-matrix product would take almost 10 minutes
to compute on a single core of the latest computer hardware, and correspondingly
faster on multiple cores. This would render the calculations infeasible. For ex-
ample, a 0.37 K initial ensemble would take half a year of cpu time to propagate
if 30 focal volume intensities must be sampled.

6.2.3 Partial time steps in Krylov subspaces
The calculation is made feasible by the realization that the matrix exp(−idtV/~)
in itself is uninteresting, as only its action on the state vector is needed. This
action can be approximated by projecting the V matrix down to the m dimen-
sional Krylov subspace Km(V, |Ψ〉) generated by V and the state vector |Ψ〉 [98,
100]

Km(V, |Ψ〉) = span{|Ψ〉, V |Ψ〉, V 2|Ψ〉, . . . , V m−1|Ψ〉}. (6.25)
1http://aws.amazon.com
2I realized after the implementation that this argumentation is somewhat flawed. Only

two much cheaper matrix-vector operations are required since (MHdiag(exp(λi))M)|Ψ〉 =
MH(diag(exp(λi))(M |Ψ〉)). However, unlike in the Krylov method below, the matrices are
not sparse. The time complexity of the Krylov method is essentially just that of 9 vector-vector
operations due to the almost diagonal representation of cos2 θ.
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6. Rationalization of observed alignment behavior

Intuitively, Km(V, |Ψ〉) can be thought of as approximately an eigenspace of V
surrounding |Ψ〉, since |Ψ〉 stays in the space under the action of V.

The vectors in the definition (6.25) are most likely not orthognonal, as the re-
peated action of V turns them towards the eigenvector of V with the largest eigen-
value. Since V is Hermitian and sparse, an orthonormal basis Vm = [v1,v2, . . . ,vm]
of Km(V, |Ψ〉) with v1 = β|Ψ〉 is found very efficiently using the Lanczos proce-
dure (see Appendix B). The action of exp(−idtV/~) on |Ψ〉 is then calculated
as

exp(−idtV/~)|Ψ〉 ≈ (V Hm Vm)−1V Hm exp(−idtV/~)|Ψ〉
= βV Hm exp(−idtV/~)Vme1

≈ β exp(−idtV Hm V Vm/~)e1, (6.26)

where the first standard basis vector in the Krylov subspace e1 = (1, 0, . . . , 0)T
(representing v1) picks out the first column of the matrix exponential. Two key
approximations are made. First, the matrix-vector product exp(−idtV/~)|Ψ〉 is
approximated with the projection of the product onto the Krylov subspace. Rec-
ognize (V Hm Vm)−1V Hm as the projection operator onto the column space of Vm
(also known as the pseudoinverse). Applied to exp(−idtV/~)|Ψ〉 it gives the least
squares solution to the overdetermined system Vm|x〉 = exp(−idtV/~)|Ψ〉, where
|x〉 is the vector in the Krylov subspace to be found. Then, the many-dimensional
problem is reduced to anm dimensional problem by approximating the projection
of the matrix exponential with the matrix exponential of the projection. In the
calculations, m = 10 suffices to accurately reproduce the results of using the full
exponential of the laser interaction. The 3-diagonal V Hm V Vm matrix is directly
available as output from the Lanczos procedure. The first column of the exponen-
tial of this 10 × 10 matrix is trivially calculated. The most expensive operation
is calculating the 9 successive matrix-vector products V |Ψ〉, V 2|Ψ〉, . . . , V 9|Ψ〉 for
the Lanczos procedure. Here, the sparseness of V facilitates the process.

The above technique is justified by comparing with the truncated Taylor ex-
pansion

exp(V )|Ψ〉 ≈ |Ψ〉+ 1
2V |Ψ〉+ · · ·+ 1

(m− 1)!V
m−1|Ψ〉. (6.27)

Clearly, the truncated Taylor expansion is a member of Km(V, |Ψ〉). Now, the
projection operator (V Hm Vm)−1V Hm picks the vector from the Krylov subspace with
the smallest distance from exp(V )|Ψ〉. The above approximations are therefore
better than simply truncating the Taylor expansion.

The entire process of applying this approximation to the state vector takes
at most a few seconds, which should be compared with the 10 minutes for the
diagonalization method. Avoiding the exponential of the full matrix has the
added benefit of not having to store a huge matrix. Only the sparse V matrix
must be stored. In this way, the memory requirement for handling V is brought
down to a negligible amount.
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6.2. Implementation

The exponential of theW ′ matrix is calculated via diagonalization, as it must
only be done once, and the Krylov subspace method seems to work a lot worse
with this matrix, requiring m > 300 for the approximation to become reasonable.

6.2.4 Propagation in imaginary time: Initial state distribution

Substitution dt→ idt gives a real phase in the time evolution operator

exp(−iHdt/~)→ exp (−Hdt/~) . (6.28)

Propagation of an initial guess for the wave function in imaginary time [101]

exp (−Hdt/~) Ψ =
∑
n

exp (−Endt/~) an|En〉 (6.29)

converges to the ground state (assuming a0 6= 0) because higher energy terms in
the sum decay faster. Numerically, the wave function must be normed in each
step to avoid drowning in round-off errors. Finally, the ground state energy is
obtained by acting on the normed final wave function

E0 = − ~
dt

ln |exp (−Hdt/~) Ψfinal| . (6.30)

The higher lying states are found by projecting out all the lower lying states every
few imaginary time steps, which ensures orthogonality. This method reproduces
the bound state energies calculated with the BOUND program mentioned in
Hutson and Thornley [91]. The BOUND program was run by Robert Zillich.

The initial thermal ensemble can be selected by giving each state a Boltzmann
weight wn ∝ exp(−En/kbT ), although in this thesis, only the ground state has
been used as the initial state, however with focal volume averaging taken into
account.

It is noted, however, that higher lying states have been seen to lead to remark-
ably different long time alignment dynamics when exposed to weak alignment
laser pulses. When kicked very gently, the different initial states apparently lead
to alignment traces with widely different revival times, some longer than 1 ns even
for HCCH-He. The revival time for HCCH in gas phase is just 14.2 ps. The much
longer revival times are likely a consequence of the much slower orbital motion
of the helium. At least some of revival times seem to correspond to the energy
level difference between the bound states, first calculated for HCCH in Refs. 96,
102 and later reproduced by the simulation program. The different revival times
could point towards an explanation for the missing or weak revivals in helium
droplets as partially a consequence of a deviation from the regular energy level
structure of isolated molecules. So far, these considerations are merely specula-
tions, as the effects of a changed energy level structure on rotational revivals have
only briefly been studied in this PhD project.
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FIG. 6.2: Measured degree of alignment for CS2 inside droplets characterized by
〈cos2 θ2D〉. The parameters are τ = 330 fs and I0 = 3.7× 1013 W/cm2.

6.3 Predictions

The original motivation for implementing this model was to understand the re-
sults shown in Figs 5.1 and 5.2 in the previous chapter. Particularly, the results
of the fast behavior for CS2 called for a better understanding of the two observed
regimes of alignment behavior. Figure 6.2 expands on the early time for the CS2
data shown in Fig. 5.2.

Figure 6.3 shows the time evolution of the probability density as function of
the distance between the He atom and the molecular center of mass calculated for
CS2 and with the pulse configuration that was used in Fig. 6.2. The probability
density P (r) is calculated by averaging the wave function ΨN over all angles

P (r) =
∫
dΩdΩr|ΨN (r,Ω)|2. (6.31)

Figure 6.3a) shows how a large fraction of the wave packet is ejected from the
molecule after the pulse. Significant probability amplitude travels about 16Å,
reaching the simulation boundary after about 1 ps. This corresponds to a speed
of roughly 1600 m/s in the center of mass frame, and a kinetic energy well above
the binding energy. The simulation shows that the helium dissociates from the
rotating molecule.

The simulation does not take more than one helium atom into account. How-
ever, assuming that the ejected helium atom travels the average He-He distance of
3.6Å [50] before elastically colliding with the surrounding helium and travelling
3.6Å back again with the same speed, a return time of 0.45 ps is obtained. Notice
that this return time is for the fastest parts of the wave packet. When the re-
flected helium collides with the molecule, the free rotation of the molecule breaks
down. This interpretation is in good agreement with the observed behavior in
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FIG. 6.3: Distributions of CS2-He separation when the complex in its ground
state is subjected to a 330 fs, 3.7× 1013 W/cm2 Gaussian pulse centered at t = 0.
a) Early-time dynamics 0-1 ps. The ground state distribution is transformed
by the pulse. b) Longer-time dynamics 1-15 ps. c) As b), but after employing
absorbing boundary conditions.



6. Rationalization of observed alignment behavior

Figs. 6.2 and 5.2, where the free rotation of CS2 breaks down after about 1 ps.
Possibly the ejected helium atoms in the droplet move slightly slower because of
the increased inertia.

6.3.1 Boundary treatment: absorption of probability
amplitude

It is apparent from the oscillatory counterpropagating wave pattern in Fig. 6.3b)
that the wave packet reflects at the end of the simulation grid at r = 20Å, which
is unphysical, at least as far as the 1 helium model is concerned. The effect of
using a finite grid is to impose the implicit condition that the wave function must
be zero outside the grid, equivalent to a hard wall. The spurious reflections cause
unphysical interactions between the molecule and the reflected atom, leading in
turn to unphysical rotational behavior. In the light of the foregoing discussion,
however, the hard wall may not seem like a bad way to model the surrounding
helium.

In order to get realistic results for the molecule dynamics for times longer
than 1 ps, the spurious reflections must be eliminated. To do so, the wave packet
approaching the end of the spherical simulation cell r ∈ [0, rmax] is removed by
employing absorbing boundary conditions [103]. By multiplying the radial wave
functions with a function that gradually goes from 1 to 0 between rmax −∆ and
rmax,

f(r) =

 1 for r < rmax −∆
exp

[
1− 1

1−
(

r−(rmax−∆)
∆

)2

]
for r ≥ rmax −∆ (6.32)

the reflections are almost completely removed. In the calculations, the number of
absorbing grid cells N∆ is 32, which means that absorption takes place over the
distance ∆ = N∆∆r ≈ 5Å. The effect of absorbing boundary conditions is seen
in Fig. 6.3c). The absorption is improved by increasing ∆ and hence the number
of absorbing grid cells, and with a more gradual decrease of the multiplicative
factor f(r). This transfer function f(r) is equivalent to a complex potential in the
Hamiltonian with negative imaginary part. With a complex absorbing potential,
the propagation is no longer unitary. Indeed the norm of the wave function is
now a decreasing function of time.

Perhaps unintuitively, the absorbed probability amplitude at large r contains
state information about the freely rotating molecule seemingly left behind. The
molecular probability amplitude in the dissociating channels is lost to the bound-
ary. In order to calculate any expectation value therefore, the molecular prob-
ability leaving the boundary must be accounted for. The expectation value for
any observable A, depending only on the molecular state, e.g. A = cos2 θ, is
calculated as

〈A〉 =
∑

jj′JJ ′LN

Aj
′J′

jLJN

∫ ∞
0

dr u∗jLJN (r)uj′LJ′N (r). (6.33)
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Here, Aj
′J′

jLJN = 〈j′LJ ′N |A|jLJN〉 is a matrix element of A. Absorbing the radial
wave function ujLJN (r) for large r modifies the weighting of the matrix elements,
yielding a wrong expectation value. This information must be recorded before
the probability is absorbed at the boundary and the information is lost. To do so,
the probability current, defined in (6.35), at some radial distance R smaller than
the start of the absorption zone is integrated over time. R should be large enough
that W (r ≥ R) ≈ 0 for any angle θr. Furthermore, the laser pulse must have
finished before any probability amplitude reaches r = R. Lastly, the centrifugal
barrier ~2L(L + 1)/2µR2 should be much smaller than the rotational energy of
the molecule Bj(j+ 1) for all involved combinations of j and L. This is expected
to be fulfilled because dissociation happens for molecules that rotate fast, and
because R is chosen as large as possible. If these conditions are fulfilled, the
coupled channel equations (6.5) decouple, and the expectation value becomes

〈A〉 =
∑

jj′JJ ′LN

Aj
′J′

jLJN

∫ R

0
dr u∗jLJNuj′LJ′N

+
∑

jj′JJ ′LN

Aj
′J′

jLJN Ujj′(t)
∫ t

0
dt′ Uj′j(t′)Ij

′J′

jLJN (R). (6.34)

where Ujj′(t) = exp
(
i(Bj(j+1)−Bj′(j′+1))

~ t
)
is a phase factor and the probability

current is
In
′

n (R) = i~
2µ

[
un′(r)

∂

∂r
u∗n(r)− u∗n(r) ∂

∂r
un′(r)

]
r=R

. (6.35)

Here, n = jLJN is a collective index. After accumulating the dissociated
probability amplitude with a phase offset Uj′j(t′) as it leaves the r = R sur-
face, the phase factor Ujj′(t) is responsible for all time evolution of the ex-
pectation value for the dissociated part of the wave packet. The expectation
value inside the r = R surface is calculated as normal. Note that for an iso-
lated molecule, exp(−iBj(j + 1)(t− t′)/~) is the time evolution operator for the
|jm〉 stationary state. Ujj′(t − t′) evolves the product of expansion coefficients
u∗jLJN (R)uj′LJ′N (R) in time. That is, the probability amplitude that propagated
through the r = R surface at time t′ in a small time step dt′. This time evolution
is that of an isolated molecule, as could be expected. A derivation of this result
following an idea from Robert Zillich is given in Appendix A.3.

This method is feasible since only the time integrals in (6.34) corresponding to
the nonzero entries in the sparse matrix representation of A = cos2 θ are needed.
The remaining time integrals may be nonzero, but they are multiplied by a zero
valued matrix element.

6.3.2 Dissociation probability: breaking-free
The effective moment of inertia of small molecules in helium droplets can be
understood as being caused by a small number (about 10 or even less) of helium
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FIG. 6.4: a) Dissociation probability for CS2-He and HCCH-He upon exciting
the ground state with a 300 fs Gaussian pulse as function of peak intensity. b)
The expectation value of the molecular angular monentum quantum number j for
CS2-He and HCCH-He under the same conditions as in a), immediately after the
pulse. The expectation values have been divided by the maximum expectation
value 〈j〉max = 95.75 for CS2-He and 〈j〉max = 8.63 for HCCH-He.

atoms forming a solvation shell around the molecule [15]. In the case of OCS
for example, only 6 atoms at the OCS-He potential minimum nicely explains the
observed moment of inertia [50]. As seen above, the CS2-He complex dissociated
violently, with relative speeds of up to 1600 m/s. It seems reasonable to suppose
that the same, high rotational energy causes ejection of the helium atoms from
the solvation shell of the CS2 molecule in helium droplets.

How low must the intensity become before the dissociation stops? To answer
this question, the dissociation probability of CS2-He and HCCH-He as a function
of the laser pulse intensity for a fixed pulse duration of 300 fs is calculated. To
calculate the dissociation probability, the wave function is projected down to
the space of all bound states, spanned by the discrete field-free V = 0 energy
eigenstates with energy E < W (r =∞) = 0. The dissociation probability is then
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FIG. 6.5: Homogeneous linewidth observed for different molecules as a function
of the excited state rotational energy. The density of states for the bulk helium
excitations is also plotted (thereby excluding droplet compression and surface
modes). The sharp increase in linewidth with increasing rotational energy corre-
lates well with the location of the roton band of bulk helium. Excerpt from [15].

obtained from the square modulus of the projected wave function as

Pd = 1−
∑
J

E<0

|〈E, J,N |ΨN (t)〉|2 . (6.36)

Here, |E, J,N〉 is an energy eigenstate, and the projection is evaluated after the
pulse. Pd is the probability that the kick pulse causes the complex to dissociate.
Another more direct way to calculate the dissociation probability is to propa-
gate the wave function to long times (hundreds of picoseconds). The dissociation
probability can then be calculated as 1 minus the square modulus of the wave
function that remains after the effects of the absorbing boundary. Such a calcula-
tion, which is a lot slower, is in good agreement with the results of the projection
method.

The result is shown in Fig. 6.4a) (note the logarithmic first axis). For the
CS2 results presented earlier, a kick pulse intensity of 3.7× 1013 W/cm2 is used.
As can be seen, a reduction of the pulse strength of more than an order of
magnitude is required in order to stop the dissociation completely. According
to a simulation, just below the dissociation threshold a 300 fs kick pulse with an
intensity of 1× 1012 W/cm2 excites rotational levels in CS2 essentially only up to
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6. Rationalization of observed alignment behavior

j = 6. This is also true if the moment of inertia is increased by a factor 3. This
narrow wave packet can not be expected to align very well, particularly inside
droplets due to blurring from nonaxial recoil.

With a rotational constant B = 0.109 cm−1 [93] the rotational energy of the
j = 6 state is as high as 4.6 cm−1. From Fig. 6.5, the rotationally-resolved
linewidth would be expected to be roughly 0.8 cm−1. From the time-energy un-
certainty principle

∆E∆t ≥ ~
2 (6.37)

assuming that the (FWHM) linewidth corresponds to 2∆E and the lifetime cor-
responds to ∆t when the equality holds, the lifetime τl is estimated from the
linewidth ν given in cm−1 as

τl = 1
2π(νc · 100 cm/m) . (6.38)

Inserting ν = 0.8 cm−1 gives a lifetime of about 100 ps. Increasing the intensity
to 2× 1012 W/cm2, which is near the dissociation threshold, gives a maximum
rotational state j ≈ 12, corresponding to a rotational energy of 17 cm−1. The
lifetime here is only about 5 ps.

Acetylene HCCH of a given parity only supports a 2-level sine-like rotational
wave packet before reaching the dissociation threshold of 7.4 cm−1 [96], which
incidentally is close to the roton energy gap (∼ 6 cm) [104]. With a rotational
constant of 1.18 cm−1, the rotational energy gives a lifetime of roughly 20 ps.

Are the linewidth results in the well-known Fig. 6.5 related to a centrifugal
breakup of the helium solvation shell? These results certainly seem to suggest
that this is the case, since the onset of dissociation correlates with the onset of
broader lines in the figure, that again correlate with the roton energy. Is there
some deeper connection between the roton band gap and the rotational energy
required for breaking loose attached helium? Or is the correlation just a coin-
cidence in the case of CS2-He and HCCH-He? As will be discussed below, an
alternative explanation having to do with the velocity of the outermost helium
atoms exceeding the Landau velocity also seems to explain some of the observed
experimental results. Perhaps a centrifugal breakup of the solvation shell com-
plements the description of rotational decay as being caused by couplings with
bulk helium excitations.

Regardless of the cause of the increasing linewidths, it is clear from these
results that heavier molecules than CS2 and HCCH must be used if the aim is to
see rotational revivals inside helium droplets. The region of kick pulse intensities
that do not lead to dissociation must support wave packets that are broad enough
to give appreciable alignment (see Fig. 6.4a)). This conclusion gives quantitative
confirmation of the speculations of Jens Hedegaard Nielsen [53, pp. 132–135].

One early aim of the new helium droplet machine presented in chapter 4 was
to be able to align HCCH in droplets. The very isotropic HCCH-He interaction
potential and its short revival time (∼ 14 ps) was though to permit alignment
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FIG. 6.6: Dissociation probability calculated for I2-He upon exciting the ground
state with a 450 fs (red) and 1.3 ps (black) pulse as a function of the peak intensity.
The dots on the curves are the dissociation probabilities calculated for the pulses
used in the experiments presented on page 71. The point labels correspond to
the panel labels in Fig. 5.6. Fine structure in the dissociation probability curves
is not captured due to a too large sample spacing.

revivals. The above considerations, however, lead instead to looking at heavier
molecules, in particular I2, of which results have been presented in chapter 5. The
dissociation probability for I2-He is shown in Fig. 6.6. The dissociation proba-
bility is calculated for the two pulse durations that are used in the experiments.
From the simulations, it is seen that I2-He supports a rotational wave packet with
up to j ≈ 18 before dissociating. This is because of the deeper I2-He potential
well, which supports many more bound states. Additionally, the much heaver I+
fragments are ejected from the droplet with less deviation from axial recoil. So
there is a better opportunity for observing revivals. Incidentally, the increased
number of bound states makes the calculation (6.36) more time consuming.

The labeled dots in Fig. 6.6 indicate the dissociation probability calculated
for I2-He when subject to the same pulses that are used in the experiments (see
Fig. 5.6) on page 71. Note that there is neglicible dissociation probability for
the first three intensities, where coherent rotational behavior was observed for
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6. Rationalization of observed alignment behavior

I2 molecules in droplets. The coherence is quenched for the panels d) and e),
where the calculated dissociation probability coincidentally rises. In panels f)-i),
the fast feature at the first few ps manifests itself. This coincides with the high
likelyhood of helium ejection predicted by the simulation, and does not seem to
be explainable from Fig. 6.5 alone.

The experimental results can also be reasoned about with Fig. 6.5. According
to a gas phase simulation (and a gas phase simulation with a 3 times higher
moment of inertia), a wave packet containing states up to j ≈ 18 is induced with
the pulse used in experiment c). For I2, B = 0.037 37 cm−1 [93] The lifetime
expected from Fig. 6.5 is only 5 ps, which is much shorter3 than the coherent
dynamics observed at around 650 ps. However, roughly half the wave packet is
made up of states below j = 10, which all have an expected lifetime longer than
650 ps. At the very lowest intensity used in Fig. 5.6 panels a) and b), all states
should have lifetimes of several nanoseconds. Like the result that there should
be no dissociation, this result does not explain the decay of alignment observed
for the lowest intensity experiment. The disagreement must at least partially be
due to the quadrupole effect mention in chapter 5.

The reader may be left wondering: Why does the dissociation probability
sometimes decrease with increasing intensity, as seen in Fig. 6.4a)? Both quantum
and classical physics offer an explanation. Classically, as the molecules that are
initially close to the alignment axis are rotated faster by the increasing pulse
strength, at some point they will rotate past the alignment axis before the pulse
is over. After crossing the θ = 0 axis, the remaining pulse causes the molecules to
slow down again, thereby loosing energy that would otherwise have been put into
ejecting helium. Quantum mechanically, as the energy level spacing increases (see
(2.11)), an increase in the pulse intensity leads to a relatively slower population
of the higher states, giving the lower states more time to mix. Thus 〈j〉 and
thereby the rotational energy dips down, as is seen in Fig. 6.4b).

6.4 Classical description

The experimental results for I2 molecules in helium droplets presented in chapter
5 could be rationalized in terms of a simplified quantum mechanical model. Ac-
cording to the model, the disappearance of the revivals is likely due to centrifugal
breakup of the solvation shell and the ensuing interactions between the rotating
molecule and excited cloud of helium atoms around it, or possibly the “walls” col-
lapsing in on the molecule as the excited atoms move away. At higher intensities,
the ejection of helium is so violent that the molecule breaks free from the envi-
ronment an rotates freely for a few ps. This interpretation is in good agreement
with the observed fast dynamics that occur for high kick pulse fluences in both
I2 and CS2. Importantly, the simplified quantum mechanical description can not
relate these findings to the bulk excitations such as rotons in the surrounding

3Actually it is about 500 ps if the rotational energy is interpreted as the energy difference
between states separated by ∆J = 2.
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6.4. Classical description

helium. The rotational energy threshold for exciting rotons is surprisingly close
to the threshold for dissociating helium, however.

Inspired by the rotational dissociation results from the quantum mechanical
model, my supervisor Henrik Stapelfeldt extended a simple classical model [59–
61] to take into account the increased effective moment of inertia due to a He-
solvation shell [15, 50]. Here, I reproduce some of Henriks results and extend
them with my own observations.

Assuming a linear molecule is initially stationary, a kick pulse induces planar
rotation with an angular velocity ω given by integrating up the torque (2.7) over
the pulse duration. A result which assumes that the molecule and its rigidly
attached solvation shell is stationary for the duration of the pulse is

ω = 1
2

∆αF
Ieffε0c

sin(2θ0), (6.39)

where
F =

∫ ∞
−∞

I(t)dt (5.2)

is the fluence and
Ieff = I + IHe (6.40)

is the effective moment of inertia for the molecule I and helium shell IHe. Ini-
tially, the molecule is at an angle θ0 with the laser pulse and ε0 and c is the
vacuum permittivity and speed of light, respectively. The simplest criterion for
dissociation of helium is

Erot > Eb, (6.41)
where Erot = 1

2IHeω
2 is the rotational energy of the helium shell and Eb is the

binding energy. This criterion translates to

ω >

√
2Eb
IHe

(6.42)

or
Fd = Ieffc

π∆α′ sin(2θ0)

√
Eb

2IHe
, (6.43)

where it is used that sin(2θ0) > 0, where α is expressed as the polarizability
volume ∆α′ = 4πε0∆α and where Fd is the fluence required for dissociation. The
binding energy is estimated from the depth of the molecule-helium potential.

With this model, the coupling with rotons can be taken into account by as-
suming that they will be excited as soon as the linear speed of the outermost
helium atoms exceeds the Landau velocity. The criterion for creating rotons is

ωrHe ≥ vL, (6.44)

or
FL = Ieffc

π∆α′ sin(2θ0)
vL

2rHe
, (6.45)
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6. Rationalization of observed alignment behavior

where FL is the fluence required to create rotons, rHe is the distance from the
center of rotation to the outermost helium atom and vL ≈ 56 m/s is the Landau
velocity in helium droplets [20].

It is unclear how many helium atoms to place in the potential and where.
Probably the average He-He distance in the droplets of 3.6Å [50] together with
the distance from the center, which gives a circumference, can be used to estimate
the number of He atoms in a ring around a cylindrically symmetric molecule.

For I2 in helium droplets, Robert Zillich calculated Ieff = 1.67I with a quan-
tum Monte Carlo method [105]. Although this factor (1.67) is quite low compared
to the factor 3 usually expected for other molecules, it makes sense, since iodine is
so heavy and yet small. The few helium atoms that can fit around an I2 molecule
won’t change the moment of inertia much.

Assuming that the outermost helium atom is positioned in the potential
well furthest from the center at rHe = 4.828Å at a potential depth of Eb =
44.28 cm−1 [97], this is enough to determine the critical fluences for exciting ro-
tons and for dissociating:

FL = 1.1 J/cm2 (6.46)
Fd = 4.10 J/cm2

. (6.47)

Here, the most favorable initial angle θ0 = 45◦ has been assumed. The ground
state energy differs significantly from the potential depth. The simulation pro-
gram presented above gives a ground state energy of 15.78 cm−1, which is in good
agreement with Ref. 97. Using this value for the binding energy instead gives

Fd = 2.45 J/cm2
. (6.48)

These fluences (1.1 J/cm2 and 2.45 J/cm2) are between the fluences used in
the experiments Fig. 5.6 b)-c) and c)-d) (see page 71), and are not at all far from
the fluence that separates coherent rotation from fast initial behavior. The disso-
ciation threshold predicted by the quantum model is about the same, 2.6 J/cm2.
However, the two models are not exactly comparable, as the quantum model
only treats one atom, while the classical model treats the entire solvation shell. If
anything, the comparison shows that if the molecule-He complex can dissociate,
then the solvation shell is also not far from breaking up.

It is again interesting to note that the two criteria, roton excitations on the
one hand, and dissociation on the other again agree on roughly the same fluence.
It is interesting to divide the critical fluence for each criteria:

Fd
FL

= rHe
vL

√
2Eb
IHe

. (6.49)

If Fd/FL < 1 dissociation happens before coupling to rotons, while if Fd/FL > 1
rotons are excited first. Note that this fraction neither depend on the initial angle
θ0, Ieff nor on ∆α. For I2, Fd/FL ≈ 1 depending on the exact binding energy
used. Since roughly IHe ∝ r2

He, only a weak dependence on the solvation shell
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6.4. Classical description

geometry of the fraction (6.49) can be expected. Furthermore note that while
IHe is proportional to the number of helium atoms, the number of helium atoms
goes up as Eb increases, since the deeper well has room for more atoms. Thus
(6.49) can only depend weakly on the molecule at all.

It would be interesting to find molecules where either Fd

FL
� 1 or Fd

FL
� 1,

corresponding to either dissociation happening long before coupling to rotons or
vice versa. Is that possible? Probably not, given the above discussion, however,
some testing of (6.49) with real numbers should be tried. Would it even make
sense to have a situation where the solvation shell is destroyed but where the
remaining helium cannot be interacted with? The converse, namely having an
intact solvation shell moving fast enough to suddenly experience friction with
the surrounding environment seems intuitively more plausible. What would the
alignment dynamics be like if the intact solvation shell is slowed by friction?

6.4.1 Impact of dissociation on alignment
With the development of the theory behind (6.34) for calculating observables even
after absorbing the wave packet at the boundary, it may seem odd that this result
has not been used yet. As it turned out, the fact that the helium dissociates at
all is the major result. The importance of this result was not realized before the
theory behind (6.34) had been developed.

In order to show the results of implementing (6.34), a few alignment traces are
presented here. The main purpose is to whet the appetite of a potential future
student working with alignment of molecule-atom complexes.

In Fig. 6.7, alignment of CS2-He below and above the dissociation threshold
is compared. The panels on the left a)-d) are for a strong pulse, whereas the
panels on the right e)-h) are for a weak pulse below the dissociation threshold.
The upper half of the figure expands on the initial 160 ps of the lower half of
the figure. Panels a),c),e) and g) are as panels b),d),f),h), respectively, but are
calculated for isolated molecules for comparison.

In panel b), the strong pulse causes the helium atom to rapidly dissociate. As
a results, the alignment trace looks very similar to the gas phase trace a), only
the amplitudes of the revivals and the permanent alignment level are reduced
slightly, due to the loss of angular momentum to the ejected helium atom. On a
long time scale c)-d), there is no new dynamics, since the helium atom has been
ejected and no longer perturbs the free rotation of the molecule.

In panel f), the weaker pulse does not lead to ejection of the helium atom.
The alignment dynamics differ from e) already within the first revival time. As
can be seen, the revivals are delayed slightly and look differently. At long times
h), the alignment dynamics is radically different than for the isolated molecule
g). The trace is no longer periodic, at least not with the same rotational period,
and a very slow oscillation with a period of almost 1 ns appears. This period is
likely related to the orbital dynamics of the helium atom.

In Fig. 6.8, alignment dynamics is shown for HCCH and HCCH-He after a
kick pulse with a fluence well above the dissociation threshold. The revivals

101



102 6. Rationalization of observed alignment behavior

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

〈c
os

2
θ〉

a) e)

0 50 100 150
Time [ps]

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

〈c
os

2
θ〉

b)

0 50 100 150
Time [ps]

f)

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

〈c
os

2
θ〉

c) g)

0 0.2 0.4 0.6 0.8 1
Time [ns]

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

〈c
os

2
θ〉

d)

0 0.2 0.4 0.6 0.8 1
Time [ns]

h)

FIG. 6.7: The degree of alignment, represented by
〈
cos2 θ

〉
, as a function of

time. a) Isolated CS2 molecules. b) CS2-He complexes. c) and d) as a) and
b), respectively, but for a longer time window. The intensity of the laser pulse
was 3.7× 1013 W/cm2 and the duration 330 fs. e)-h) as a)-d), respectively, but
with a 2.0× 1012 W/cm2, 300 fs pulse, i. e. a weaker pulse. The calculations are
averaged over the focal volume and started from the ground state.
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FIG. 6.8: The degree of alignment, represented by
〈
cos2 θ

〉
, as a function of

time. a) Isolated HCCH molecules. b) HCCH-He complexes. The intensity is
2.0× 1013 W/cm2 and the duration 300 fs. The calculations are averaged over
the focal volume and started from the ground state.

for HCCH-He decay and are almost completely gone after one rotational period.
They do not re-appear even after 1 ns. As HCCH has much less rotational inertia,
it is more strongly perturbed by the interaction with the helium, and coherence
is lost. The dissociation time is comparable to the rotational period of HCCH,
which is reflected in the time it takes for the revivals to decay.

For a kick pulse below the dissociation fluence, essentially only a 2-state wave
packet can be excited from the ground state. This leads to just a sinusoidal
alignment trace, and it is very difficult to tell the difference between the alignment
dynamics for HCCH and HCCH-He. However, in the Fourier spectrum, periods
as large as 22.8 ps can be identified. This period, which corresponds to an energy
of 1.46 cm−1, is in agreement with the smallest difference between energies of
stationary states of HCCH-He for even J calculated in Ref. 96.

6.5 Summary

To summarize, it has been shown that a quantum mechanical calculation of the
dynamics of a linear molecule with a weakly bound atom after a strong laser
pulse is feasible, provided an accurate molecule-atom potential energy surface is
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6. Rationalization of observed alignment behavior

available. This has been demonstrated for HCCH-He, CS2-He and I2-He. For
molecule-atom complexes, two distinct regimes are identified. For low intensity
pulses, the atom stays attached to the molecule and influences the rotational
dynamics of the molecule. For high intensity pulses, the atom quickly (∼ few ps)
breaks free from the molecule, and the molecule rotates freely hereafter.

This result has been related to the experimental results for I2 molecules
aligned in helium droplets presented in chapter 5. It is assumed that centrifugal
breakup of the solvation shell in helium droplets occurs at roughly the same kick
pulse fluences that lead to ejection of the helium atom in the molecule-he com-
plex. Under this assumption, the quantum model predicts centrifugal breakup at
the same kick pulse fluences where the experiment shows loss of rotational coher-
ence. The appearance of fast rotational dynamics at high kick pulse fluences for
I2 and CS2 in helium droplets are rationalized as being caused by rapid ejection
of helium atoms, leading to free rotation. The free rotaion is short lived, though,
because the rest of the droplet crushes in on the molecule shortly hereafter.

A classical model which is in rough agreement with both the quantum model
and the experiments partly elucidates the connection between rotational breakup
and coupling to rotons in the bulk. The classical model points towards the result
that roton excitations become available at the same kick pulse fluences that lead
to centrifugal breakup of the solvation shell, independently of the molecule. The
robustness of this result has not yet been tested by actually comparing with other
molecules than I2.
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7
Conclusion and outlook

The focus of this PhD project has been on improving the understanding of 1D
laser-induced alignment and rotation of molecules embedded in superfluid helium
nanodroplets. The work is motivated by the strong contrast between rotationally-
resolved spectra and the historical results of aligning molecules inside helium
droplets.

In the first part of this thesis, the theory of alignment for isolated molecules
is reviewed, and it is extended to include ways of treating 〈cos2 θ2D〉, which is the
characterization of alignment used experimentally. A new result is that 〈cos2 θ2D〉
can be calculated, even very efficiently, for linear and symmetric top molecules.
Another new result is that in the case of a linear molecule, 〈cos2 θ〉, the primar-
ily theoretical characterization of alignment, can be efficiently reconstructed via
Fourier analysis of measurements of 〈cos2 θ2D〉 alone. The effect of measuring
only two velocity components in Coulomb explosion imaging is to introduce new
frequencies in the recorded alignment spectra. These frequencies can be identi-
fied and removed. New fine structure (higher order revivals) in 〈cos2 θ2D〉 traces
that survive experimental smearing effects (thermal and focal volume averaging)
have been identified. Normally, this structure masquerades as experimental noise.
However, careful Fourier analysis shows the fingerprint of this fine structure in
experimental data.

The theory of alignment of isolated molecules together with the new the-
ory of 〈cos2 θ2D〉 is incorporated into an efficient and user-friendly 1D alignment
simulation program with many practical uses. Comparisons of simulations with
experiments show that the theory for 〈cos2 θ2D〉 is in excellent agreement with
experiments. Several applications of this simulation program are demonstrated.
For example, by directly comparing simulations to the alignment of molecules
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inside helium droplets (after deconvolving nonaxial recoil), the droplet tempera-
ture was estimated to be between 0.2 K and 0.5 K, in agreement with an expected
temperature of 0.37 K [14]. To my knowledge, this constitutes the first ever de-
termination of the droplet temperature by means of molecular alignment. The
temperature determination could potentially be improved by also taking into
account the effects of probe selectivity.

A better understanding of nonaxial recoil and probe selectivity would in gen-
eral provide for the most precise comparisons with experimental results. A direc-
tion has been given for incorporating these effects into the theory of alignment
in the future.

The new droplet machine recently built in Femtolab by Benjamin Shepperson
is described. With this machine, new impulsive alignment experiments on isolated
I2 and I2 molecules inside helium nanodroplets were conducted. These results
show striking new alignment dynamics of both isolated I2 and I2 inside droplets.
The isolated molecules show alignment behavior that deviates from the normal
alignment theory. In particular, a partial decay of rotational angular momentum,
consistent with a ∆J = ±1 rule is observed. This effect is tentatively ascribed
to quadrupole interactions with the iodine nuclei. In spite of this self-decay, the
experiments on molecules in droplets show several new, never observed before
features of alignment in helium droplets. Clear signs of coherent rotational motion
are observed, most striking of which is a revival-like feature between 550–750 ps
that seems to be positioned independently of the kick pulse fluence. At higher
fluences, however, this feature disappears along with other signs of rotational
coherence. Instead, a new fast structure emerges immediately after the pulse,
similar to the one observed for CS2 in helium droplets.

The new results are rationalized with two simplified models. The first model
describes a linear molecule with a weakly bound atom quantum mechanically.
Simulations using this model were first made feasible after implementing sev-
eral optimizations. This model shows that the helium atom easily dissociates
centrifugally even with relatively weak alignment pulses. The centrifugal dis-
sociation threshold calculated with this model matches incredibly well with the
transition between coherent rotation and fast dynamics observed in the I2 align-
ment experiments in helium droplets. In this way, the observed fast alignment
dynamics is rationalized as being caused by rapid breakup of the helium solva-
tion shell. The breakup leaves the molecule in a small cavity which subsequently
collapses, destroying the rotational coherence. Much the same result is obtained
in a simple classical model. The classical model further predicts that below the
threshold for centrifugal breakup, the highest linear speed of the molecule and
solvation shell structure is below the Landau velocity. That would explain the
existence of rotational coherence at low kick pulse fluences.

It seems like impulsive alignment of molecules in helium droplets has been
reconciled with rotationally-resolved spectroscopy. However, studies of other,
heavier molecules are needed in order to confirm the developed theory.

In parallel with the work presented in this thesis, the group of Mikhail Lemeshko
has developed what is known as angulon theory [106, 107] based on many-body
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physics. Angulons are quantum rotors “dressed” by quantum fields. Angulons
offer a different approach to describing the solvation shell of atoms around a
molecule in superfluid helium. Although not shown in this thesis, the angulon
theory in its current form seems to capture at least some of the observed dy-
namics of impulsively aligned I2 molecules in helium droplets, particularly at the
lowest fluences.
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ix A
Selected derivations

In this appendix, results mentioned in the main text are derived.

A.1 Gaunt coefficient trick on an expansion in rotation
matrices

For the observableO(Ω) =
∑
JKM aJM,K 〈Ω|JKM〉, the matrix elementsOJ′JKM =

〈J ′KM |O|JKM〉 are by definition [58]

OJ′JKM =
√

2J ′ + 1
8π2

∫
DJ′

M,K

( ∑
J′′K′′M ′′

aJ
′′

M ′′,K′′

×(−1)M
′′−K′′

√
2J ′′ + 1

8π2 DJ′′

−M ′′,−K′′

)
(−1)M−K

√
2J + 1

8π2 DJ
−M,−KdΩ

=
√

(2J + 1)(2J ′ + 1)
8π2

∑
J′′K′′M ′′

aJ
′′

M ′′,K′′(−1)M
′′−K′′+M−K

√
2J ′′ + 1

8π2

×
∫

DJ′′

−M ′′,−K′′D
J′

M,KDJ
−M,−KdΩ

=
√

(2J + 1)(2J ′ + 1)
8π2

∑
J′′K′′M ′′

aJ
′′

M ′′,K′′(−1)M
′′−K′′+M−K

√
2J ′′ + 1

8π2

× 8π2
(

J J ′ J ′′

−K K −K ′′
)(

J J ′ J ′′

−M M −M ′′
)

(A.1)
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= (−1)M−K
√

(2J + 1)(2J ′ + 1)
8π2

×
∑
J′′

aJ
′′

0,0
√

2J ′′ + 1
(

J J ′ J ′′

K −K 0

)(
J J ′ J ′′

M −M 0

)
(A.2)

where in the last step, the property of 3j symbols that the bottom row must sum
to zero has been used. The general matrix element (2.23) is obtained by putting
primes on M and K in the first rotation matrix element and following through.

A.2 Taking probe selectivity and nonaxial recoil into
account

In this section, the claims of section 2.2.4 are proven.

Probe selectivity: The probability density for the direction Ω of the molecule
is given by fundamental quantum mechanics as P (Ω) = Ψ∗(Ω)Ψ(Ω), where Ψ(Ω)
is the rotational wave function. The nonuniform detection probability Wρ(Ω)
implied by the probe selectivity modulates the observed probability P (Ω) →
P (Ω)Wρ(Ω). The probability of detecting a molecule pointing along the infinites-
imal solid angle dΩ is therefore dΩ · P (Ω)Wρ(Ω). The observable O is thus
weighted by the total probability:

〈Owith probe selectivity〉 =
∫
dΩΨ∗(Ω)Ψ(Ω) · (Wρ(Ω)O(Ω)) . (A.3)

This is the quantummechanical definition of the expectation value ofWρ(Ω)O(Ω).
By finding the matrix elements of Wρ(Ω)O(Ω), expectation values for O with
probe selectivity taken into account can be evaluated efficiently.
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A.2. Taking probe selectivity and nonaxial recoil into account

Nonaxial recoil: Given that the molecule points in some direction Ω, nonaxial
recoil is a probability P (Ω′|Ω) that another direction Ω′ is actually measured. The
expectation value of measuring O(Ω′), given that the molecule points along Ω is
then

〈O′〉 |Ω =
∫
O(Ω′)P (Ω′|Ω)dΩ′. (A.4)

The expectation value 〈O′〉 |Ω integrated over the probability distribution for
pointing in the direction Ω, P (Ω) = Ψ∗(Ω)Ψ(Ω) is

〈O′〉 =
∫
〈O′〉 |ΩP (Ω)dΩ

=
∫ ∫

O(Ω′)P (Ω′|Ω)dΩ′P (Ω)dΩ

=
∫
dΩP (Ω)

(∫
O(Ω′)P (Ω′|Ω)dΩ′

)
=
∫
dΩΨ∗(Ω)Ψ(Ω)Õ =

〈
Õ
〉
. (A.5)

Thus the matrix elements of the observable

Õ =
∫
O(Ω′)P (Ω′|Ω)dΩ′, (A.6)

permit efficient evaluation of observables with nonaxial recoil taken into account.
If further P (Ω′|Ω) = P (Ω′ − Ω), i. e. the probability can be expressed as only a
function of the difference between the two orientations, then (A.6) is a spherical
convolution, which can be calculated efficiently.

Nonaxial recoil and probe selectivity: The expectation value for Õ with
probe selectivity taken into account is by (A.3) given as〈

Õwith probe selectivity

〉
=
∫
dΩΨ∗(Ω)Ψ(Ω) (Wρ(Ω)Õ)︸ ︷︷ ︸

Ototal(Ω)

. (A.7)

The matrix elements of

Ototal(Ω) = Wρ(Ω)
∫
O(Ω′)P (Ω′|Ω)dΩ′ (A.8)

then permit efficient evaluation of the degree of alignment with both probe selec-
tivity and nonaxial recoil taken into account. Note that this is in agreement with
the expectation that probe selectivity should be accounted for before any nonaxial
recoil occurs. The laser should ionize the molecule first, before the fragments can
recoil and deviate from a straight line. In (A.7), the probability of measuring a
direction Ω′ is weighted by the probability of detecting the direction Ω.
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A. Selected derivations

A.3 Keeping track of absorbed probability

To account for the lost molecular probability amplitude due to the absorbing
boundary in section 6.3.1, the probability current is integrated up just before it
hits the absorbing boundary. To see how this works, pick R large enough that
W (r > R) ≈ 0 for all angles θr. Further, no probability amplitude should reach
r = R before the pulse is over. Then W = 0, and the coupled channel equations
(6.5) reduce to the Schrödinger equation for a particle in a constant potential

i~u̇n(r) = − ~2

2µ
∂2

∂r2un(r) + Eang
jL (r)un(r), (A.9)

where n = jLJN is a collective channel index and for large r

Eang
jL (r) = ~2L(L+ 1)

2µr2 +Bj(j + 1) ≈ Bj(j + 1) ≡ Erot
j . (A.10)

At r > R, the channels are no longer coupled, since no primed channels occur in
(A.9). The expectation value (6.33) is split up

〈A〉 =
∑

jj′JJ ′LN

Aj
′J′

jLJN

∫ R

0
dr u∗jLJNuj′LJ ′N+

∑
jj′JJ ′LN

Aj
′J′

jLJN

∫ ∞
R

dr u∗jLJNuj′LJ′N .

(A.11)
The first term is calculated as usual, but the other term is replaced by using
the continuity equation ∂ρw

∂t = −∂jw

∂r + σ(r, t). Setting the weight density ρw =
u∗n(r)un′(r) and assuming the source term σ is zero, the infinite integral∫ ∞

R

dr u∗jLJNuj′LJ′N =
∫ t

0
dt′ jw(R) (A.12)

is replaced by a finite time integral of the current jw(R). After evaluating ρ̇w
using (A.9) (and the complex conjugate of (A.9)), the current and source terms
are identified as

jw(R) = i~
2µ

[
un′(r)

∂

∂r
u∗n(r)− u∗n(r) ∂

∂r
un′(r)

]
r=R

(A.13)

σ =
i(Erot

j − Erot
j′ )

~
ρw(r). (A.14)

The diagonal source term is zero, as could be expected since ρw is then just the
probability density |un(r)|2, and probability must be conserved. The off-diagonal
source term is non-zero because of the constant potential. The total weight is not
conserved, and the analysis has broken down! However, a rescaling of the radial
wave function

wn = exp
(
iErot

j

~
t

)
un (A.15)
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A.3. Keeping track of absorbed probability

leading to a new weight density ρw → τw = w∗nwn′ can be shown to remove the
source term. This is seen by applying the continuity equation on τw instead of ρw.
In this way 〈A〉 can be calculated by integrating up the current corresponding to
the conserved τw

〈A〉 =
∑

jj′JJ ′LN

Aj
′J′

jLJN

∫ R

0
dr u∗jLJNuj′LJ ′N

+
∑

jj′JJ ′LN

Aj
′J′

jLJN Ujj′(t)
i~
2µ

∫ t

0
dt′ Uj′j(t′)

[
un′(r)

∂

∂r
u∗n(r)− u∗n(r) ∂

∂r
un′(r)

]
r=R

,

(A.16)

where the phase Ujj′(t) = exp
(
i(Ej−Ej′ )

~ t
)
derive from the rescaling of the radial

wave function. The current corresponding to τw is

kw = Uj′jjw. (A.17)
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ix B
Arnoldi and Lanzcos processes

The orthogonalization procedure used in the Krylov subspace method (see section
6.2.3) are summarized in the following. For more detail, refer to the literature,
e.g. [98–100] and references therein.

For the m dimensional Krylov subspace generated by a matrix A and a vector
b,

Km(A, b) = span{b, Ab,A2b, . . . , Am−1b} (B.1)

the Arnoldi process is a stabilized version of the Gram-Schmidt process for ob-
taining an orthonormal basis Vm = [v1,v2, . . . ,vm] of the Krylov subspace. It
starts with the normed vector b and iteratively projects out previous vectors.
At each step, the matrix A is applied to the resulting vector instead of succes-
sively to the original vector b. This is what makes it stable. Along the way,
the overlaps with previous vectors, and the final norm of the vector, is stored
in an upper Hessenberg matrix Hm (i.e. upper triangular with one additional
lower off-diagonal). The overlaps are stored in the upper triangle just like in the
Gram-Schmidt QR decomposition algorithm. The final norms are stored in the
lower off-diagonal. The matrix Hm satisfies AVm = VmHm ⇒ V Hm AVm = Hm,
i.e. Hm is the projection of A onto the Krylov subspace.

If A is Hermitian, then, since Hm has zeroes below the first lower off-diagonal,
it must also have zeros above the first upper off-diagonal. That is, it must be
tridiagonal. Effectively, this means that most overlaps are zero, and the vector
in each iteration is automatically orthogonal to all but the previous vector.

The Lanzcos process is just the Arnoldi process where only the previous vector,
and not all previous vectors are projected out in each step.
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